Skip to main content
Log in

Structural features of core–shell zeolite–zeolite composite and its performance for methanol conversion into gasoline and diesel

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Zeolite–zeolite composite composed of alumina-rich hierarchically porous ZSM-5 cores and high-silicon MFI shells was prepared by a hydrothermal synthesis procedure, in which a commercial ZSM-5 zeolite with a SiO2/Al2O3 of 36 was treated by an alkaline solution and then used as a supporter for epitaxial growth of a polycrystalline Silicalite-1 zeolite shell (denoted as MMZsa). Acid sites associated with framework Al on exterior surfaces of ZSM-5 zeolite cores are therefore passivated in different degrees by the epitaxial MFI zeolite shell. The structural, crystalline, and textural properties of the as-synthesized samples were characterized by x-ray powder diffraction (XRD), energy-dispersive x-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), N2 adsorption-desorption, in situ IR spectra of pyridine and NH3-TPD. Aluminum species were observed to transfer from the alumina-rich cores to the high-silica shells. The adjustable thickness and SiO2/Al2O3 ratio of the shell offer the as-synthesized composite a potential and high-efficiency catalyst for methanol conversion into gasoline and diesel. As compared with the commercial ZSM-5 zeolite, the composite catalyst exhibits excellent catalytic performances with a longer catalytic life as well as a higher conversion and a slightly higher yield of diesel oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. A. Ghorbanpour, A. Gumidyala, L.C. Grabow, S.P. Crossley, and J.D. Rimer: Epitaxial growth of ZSM-5@silicalite-1: A core–shell zeolite designed with passivated surface acidity. ACS Nano 9, 4006 (2015).

    Article  CAS  Google Scholar 

  2. Y. Isaev and J.J. Fripiat: A Lewis acid site-activated reaction in zeolites: Thiophene acylation by butyryl chloride. J. Catal. 182, 257 (1999).

    Article  CAS  Google Scholar 

  3. G. Garralón, V. Fornés, and A. Corma: Faujasites dealuminated with ammonium hexafluorosilicate: Variables affecting the method of preparation. Zeolites 8, 268 (1988).

    Article  Google Scholar 

  4. B.J. Shen, Z.X. Qin, X.H. Gao, F. Lin, S.G. Zhou, W. Shen, B.J. Wang, H.J. Zhao, and H.H. Liu: Desilication by alkaline treatment and increasing the silica to alumina ratio of zeolite Y. Chin. J. Catal. 33, 152 (2012).

    Article  CAS  Google Scholar 

  5. Z.X. Qin, B.J. Shen, Z.W. Yu, F. Deng, L. Zhao, S. Zhou, D.L. Yuan, X.H. Gao, B.J. Wang, H.J. Zhao, and H.H. Liu: A defect-based strategy for the preparation of mesoporous zeolite Y for high-performance catalytic cracking. J. Catal. 298, 102 (2013).

    Article  CAS  Google Scholar 

  6. M. Enterría, F. Suárez-García, A. Martínez-Alonso, and J.M.D. Tascón: Preparation of hierarchical micro-mesoporous aluminosilicate composites by simple Y zeolite/MCM-48 silica assembly. J. Alloys Compd. 583, 60 (2014).

    Article  CAS  Google Scholar 

  7. L.X. Jia, X.Y. Sun, X.Q. Ye, C.L. Zou, H.F. Gu, Y. Huang, G.X. Niu, and D.Y. Zhao: Core–shell composite of USY@Mesosilica: Synthesis and application in cracking heavy molecules with high liquid yield. Microporous Mesoporous Mater. 176, 16 (2013).

    Article  CAS  Google Scholar 

  8. S. Al-Khattaf: Catalytic transformation of toluene over a high-acidity Y-zeolite based catalyst. Energy Fuels 20, 946 (2006).

    Article  CAS  Google Scholar 

  9. T. Odedairo and S. Al-Khattaf: Kinetic investigation of benzene ethylation with ethanol over USY zeolite in a riser simulator. Ind. Eng. Chem. Res. 49, 1642 (2010).

    Article  CAS  Google Scholar 

  10. G. Agostini, C. Lamberti, L. Palin, M. Milanesio, N. Danilina, B. Xu, M. Janousch, and J.A. van Bokhoven: In situ XAS and XRPD parametric Rietveld refinement to understand dealumination of Y zeolite catalyst. J. Am. Chem. Soc. 132, 667 (2010).

    Article  CAS  Google Scholar 

  11. D. Ma, F. Deng, R.Q. Fu, X.W. Han, and X.H. Bao: Mas NMR studies on the dealumination of zeolite MCM-22. J. Phys. Chem. B 105, 1770 (2001).

    Article  CAS  Google Scholar 

  12. S.M. Maier, A. Jentys, and J.A. Lercher: Steaming of zeolite BEA and its effect on acidity: A comparative NMR and IR spectroscopic study. J. Phys. Chem. C 115, 8005 (2011).

    Article  CAS  Google Scholar 

  13. L.R. Aramburo, L. Karwacki, P. Cubillas, S. Asahina, D.A. Matthijs de Winter, M.R. Drury, I.L.C. Buurmans, E. Stavitski, D. Mores, M. Daturi, P. Bazin, P. Dumas, F. Thibault-Starzyk, J.A. Post, M.W. Anderson, O. Terasaki, and B.M. Weckhuysen: The porosity, acidity, and reactivity of dealuminated zeolite ZSM-5 at the single particle level: The influence of the zeolite architecture. Chem.–Eur. J. 17, 13773 (2011).

    Article  CAS  Google Scholar 

  14. Z. Qin, L. Lakiss, J-P. Gilson, K. Thomas, J-M. Goupil, C. Fernandez, and V. Valtchev: Chemical equilibrium controlled etching of MFI-type zeolite and its influence on zeolite structure, acidity, and catalytic activity. Chem. Mater. 25, 2759 (2013).

    Article  CAS  Google Scholar 

  15. B.M. Chandra Shekara, B.S. Jai Prakash, and Y.S. Bhat: Dealumination of zeolite BEA under microwave irradiation. ACS Catal. 1, 193 (2011).

    Article  CAS  Google Scholar 

  16. H.M. Kao and Y.C. Chen: 27Al and 19F solid-state NMR studies of zeolite H-β dealuminated with ammonium hexafluorosilicate. J. Phys. Chem. B 107, 3367 (2003).

    Article  CAS  Google Scholar 

  17. C.S. Triantafillidis and N.P. Evmiridis: Dealuminated H-Y zeolites: Influence of the number and type of acid sites on the catalytic activity for isopropanol dehydration. Ind. Eng. Chem. Res. 39, 3233 (2000).

    Article  CAS  Google Scholar 

  18. C.S. Triantafillidis, A.G. Vlessidis, and N.P. Evmiridis: Dealuminated H-Y zeolites: Influence of the degree and the type of dealumination method on the structural and acidic characteristics of H-Y zeolits. Ind. Eng. Chem. Res. 39, 307 (2000).

    Article  CAS  Google Scholar 

  19. S. van Donk, A.H. Janssen, J.H. Bitter, and K.P. de Jong: Generation, characterization, and impact of mesopores in zeolite catalysts. Catal. Rev. 45, 297 (2003).

    Article  CAS  Google Scholar 

  20. X.Y. Lin, Y. Fan, G. Shi, H.Y. Liu, and X.J. Bao: Coking, and deactivation behavior Of HZSM-5 zeolite-based FCC gasoline hydro-upgrading catalyst. Energy Fuels 21, 2517 (2007).

    Article  CAS  Google Scholar 

  21. R.H. Abudawood, F.M. Alotaibi, and A.A. Garforth: Hydroisomerization of n-heptane over Pt-loaded USY zeolite. Effect of steaming, dealumination, and the resulting structure on catalytic properties. Ind. Eng. Chem. Res. 50, 9918 (2011).

    Article  CAS  Google Scholar 

  22. T. Hibino, M. Niwa, and Y. Murakami: Shape-selectivity over HZSM-5 modified by chemical vapor deposition of silicon alkoxide. J. Catal. 128, 551 (1991).

    Article  CAS  Google Scholar 

  23. J.H. Kim, A. Ishida, M. Okajima, and M. Niwa: Modification of HZSM-5 by CVD of various silicon compounds and generation of para-selectivity. J. Catal. 161, 387 (1996).

    Article  CAS  Google Scholar 

  24. J. Cejka, N. Zilkova, B. Wichterlova, G. Elder-Mirth, and J.A. Lercher: Decisive role of transport rate of products for zeolite para-selectivity: Effect of coke deposition and external surface silylation on activity and selectivity of HZSM-5 in alkylation of toluene. Zeolites 17, 265 (1996).

    Article  CAS  Google Scholar 

  25. S. Zheng, H. Tanaka, A. Jentys, and J.A. Lercher: Novel model explaining toluene diffusion in HZSM-5 after surface modification. J. Phys. Chem. B 108, 1337 (2004).

    Article  CAS  Google Scholar 

  26. N.Y. Chen, W.W. Kaeding, and F.G. Dwyer: Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts. J. Am. Chem. Soc. 101, 6783 (1979).

    Article  CAS  Google Scholar 

  27. W.W. Kaeding, C. Chu, L.B. Young, B. Weinstein, and S.A. Butter: Selective alkylation of toluene with methanol to produce para-Xylene. J. Catal. 67, 159 (1981).

    Article  CAS  Google Scholar 

  28. W.O. Parker, Jr. A. de Angelis, C. Flego, R. Millini, C. Perego, S. Zanardi: Unexpected destructive dealumination of zeolite beta by silylation. J. Phys. Chem. C 114, 8459 (2010).

    Article  CAS  Google Scholar 

  29. C.R. Moreira, M.H. Herbst, P.R. de la Piscina, J-L.G. Fierro, N. Homs, and M.M. Pereira: Evidence of multi-component interaction in a V-Ce-HUSY catalyst: Is the cerium-EFAL interaction the key of vanadium trapping. Microporous Mesoporous Mater. 115, 253 (2008).

    Article  CAS  Google Scholar 

  30. X.P. Duan, Y. Teng, A.J. Wang, V.M. Kogan, X. Li, and Y. Wang: Role of sulfur in hydrotreating catalysis over nickel phosphide. J. Catal. 261, 232 (2009).

    Article  CAS  Google Scholar 

  31. K.K. Bando, Y. Koike, T. Kawai, G. Tateno, S.T. Oyama, Y. Inada, M. Nomura, and K. Asakura: Quick x-ray absorption fine structure studies on the activation process of Ni2P supported on K-USY. J. Phys. Chem. C 115, 7466 (2011).

    Article  CAS  Google Scholar 

  32. W. Lutz, H. Toufar, D. Heidemann, N. Salman, C.H. Rüscher, and T.M. Gesing, J-Chr. Buhl, R. Bertram: Siliceous extra-framework species in dealuminated Y zeolites generated by steaming. Microporous Mesoporous Mater. 104, 171 (2007).

    Article  CAS  Google Scholar 

  33. B. Féron, P. Gallezot, and M. Bourgogne: Hydrothermal aging of cracking catalysts: V. Vanadium passivation by rare-earth compounds soluble in the feedstock. J. Catal. 134, 469 (1992).

    Article  Google Scholar 

  34. A.M. Goossens, B.H. Wouters, P.J. Grobet, V. Buschmann, L. Fiermans, and J.A. Martens: Synthesis and characterization of epitaxial FAU-on-EMT zeolite overgrowth materials. Eur. J. Inorg. Chem. 5, 1167 (2001).

    Article  Google Scholar 

  35. A.L. Yonkeu, G. Miehe, H. Fuess, A.M. Goossens, and J.A. Martens: A new overgrowth of mazzite on faujasite zeolite crystal investigated by x-ray diffraction and electron microscopy. Microporous Mesoporous Mater. 96, 396 (2006).

    Article  CAS  Google Scholar 

  36. M. Miyamoto, T. Kamei, N. Nishiyama, Y. Egashira, and K. Ueyama: Single crystals of ZSM-5/Silicalites composites. Adv. Mater. 17, 1985 (2005).

    Article  CAS  Google Scholar 

  37. M. Okamoto and Y. Osafune: MFI-type zeolite with a core–shell structure with minimal defects synthesized by crystal overgrowth of aluminum-free MFI-type zeolite on aluminum-containing zeolite and its catalytic performance. Microporous Mesoporous Mater. 143, 413 (2011).

    Article  CAS  Google Scholar 

  38. X.W. Zhang, Q. Guo, B. Qin, Z.Z. Zhang, F.X. Ling, W.F. Sun, and R.F. Li: Structural features of binary microporous zeolite composite Y-beta and its hydrocracking performance. Catal. Today 149, 212 (2010).

    Article  CAS  Google Scholar 

  39. J.J. Zheng, X.W. Zhang, Y. Wang, Y.D. Bai, W.F. Sun, and R.F. Li: Synthesis and catalytic performance of a bi-phase core-shell zeolite composite. J. Porous Mater. 16, 731 (2009).

    Article  CAS  Google Scholar 

  40. T. Ohsuna, O. Terasaki, Y. Nakagawa, S.I. Zones, and K. Hiraga: Electron microscopic study of intergrowth of MFI and MEL: Crystal faults in B-MEL. J. Phys. Chem. B 101, 9881 (1997).

    Article  CAS  Google Scholar 

  41. K.R. Kloetstra, H.W. Zandbergen, J.C. Jansen, and H. van Bekkum: Overgrowth of mesoporous MCM-41 on faujasite. Microporous Mater. 6, 287 (1996).

    Article  CAS  Google Scholar 

  42. X.F. Qian, J.M. Du, B. Li, M. Si, Y.S. Yang, Y.Y. Hu, G.X. Niu, Y.H. Zhang, H.L. Xu, B. Tu, Y. Tang, and D.Y. Zhao: Controllable fabrication of uniform core–shell structured zeolite@SBA-15 composites. Chem. Sci. 2, 2006 (2011).

    Article  CAS  Google Scholar 

  43. L.D. Rollmann: ZSM-5 containing alumin-free shells on its surface. USA Patent, 4088605, May 9, 1978.

  44. D.J. Kong, W. Zou, J.L. Zheng, X.L. Qi, and D.Y. Fang: Crystallization kinetics and influencing factors in the syntheses of MFI/MFI core–shell zeolites. Acta Chim. Sin. 25, 1921 (2009).

    Article  CAS  Google Scholar 

  45. Y.X. Zhou, W.Y. Tong, W. Zou, X.L. Qi, and D.J. Kong: Manufacture of b-oriented ZSM-5/silicalite-1 core/shell structured zeolite catalyst. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 45, 1356 (2015).

    Article  CAS  Google Scholar 

  46. C.S. Lee, T.J. Park, and W.Y. Lee: Alkylation of toluene over double structure ZSM-5 type catalysts covered with a silicalite shell. Appl. Catal., A 96, 151 (1993).

    Article  CAS  Google Scholar 

  47. Q.H. Li, Z. Wang, J. Hedlund, D. Creaser, H. Zhang, X.D. Zou, and A-J. Bons: Synthesis and characterization of colloidal zoned MFI crystals. Microporous Mesoporous Mater. 78, 1 (2005).

    Article  CAS  Google Scholar 

  48. D.V. Vu, M. Miyamoto, N. Nishiyama, S. Ichikawa, Y. Egashira, and K. Ueyama: Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites. Microporous Mesoporous Mater. 115, 106 (2008).

    Article  CAS  Google Scholar 

  49. D.V. Vu, M. Miyamoto, N. Nishiyama, Y. Egashira, and K. Ueyama: Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals. J. Catal. 243, 389 (2006).

    Article  CAS  Google Scholar 

  50. M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, M. Nomura, E. Kikuchi, and M. Matsukata: Alkali-treatment technique—New method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Appl. Catal., A 219, 33 (2001).

    Article  CAS  Google Scholar 

  51. Z.T. Xue, J.H. Ma, T. Zhang, H.X. Miao, and R.F. Li: Synthesis of nanosized ZSM-5 zeolite with intracrystalline mesopores. Mater. Lett. 68, 1 (2012).

    Article  CAS  Google Scholar 

  52. R. Liu, Y. Ren, Y. Shi, F. Zhang, L. Zhang, B. Tu, and D. Zhao: Controlled synthesis of ordered mesoporous C-TiO2 nanocomposites with crystalline titania frameworks from organic-inorganic-amphiphilic coassembly. Chem. Mater. 20, 1140 (2008).

    Article  CAS  Google Scholar 

  53. J.J. Zheng, Q.H. Zeng, Y.Y. Zhang, Y. Wang, J.H. Ma, X.W. Zhang, W.F. Sun, and R.F. Li: Hierarchical porous zeolite composite with a core–shell structure fabricated using β-zeolite crystals as nutrients as well as cores. Chem. Mater. 22, 6065 (2010).

    Article  CAS  Google Scholar 

  54. Q.Q. Zhang, W.X. Ming, J.H. Ma, J.L. Zhang, P. Wang, and R.F. Li: De novo assembly of a mesoporous beta zeolite with intracrystalline channels and its catalytic performance for biodiesel production. J. Mater. Chem. A 2, 8712 (2014).

    Article  CAS  Google Scholar 

  55. Z.P. Wang, C. Li, H.J. Cho, S-C. Kung, M.A. Snyder, and W. Fan: Direct, single-step synthesis of hierarchical zeolites without secondary templating. J. Mater. Chem. A 3, 1298 (2015).

    Article  CAS  Google Scholar 

  56. C. Wang, M. Yang, P. Tian, S.T. Xu, Y. Yang, D.H. Wang, Y.Y. Yuan, and Z.M. Liu: Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. J. Mater. Chem. A 3, 5608 (2015).

    Article  CAS  Google Scholar 

  57. J.C. Groen, L.A.A. Peffer, J.A. Moulijn, and J. Pérez-Ramírez: On the introduction of intracrystalline mesoporosity in zeolites upon desilication in alkaline medium. Microporous Mesoporous Mater. 69, 29 (2004).

    Article  CAS  Google Scholar 

  58. J.S. Jung, J.W. Park, and G. Seo: Catalytic cracking of n-octane over alkali-treated MFI zeolites. Appl. Catal., A 288, 149 (2005).

    Article  CAS  Google Scholar 

  59. S.K. Saxena, N. Viswanadham, and T. Sharma: Breakthrough mesopore creation in BEA and its enhanced catalytic performance in solvent-free liquid phase tert-butylation of phenol. J. Mater. Chem. A 2, 2487 (2014).

    Article  CAS  Google Scholar 

  60. A.T. Aguayo, A.G. Gayubo, J. Ereña, R. Vivanco, and J. Bilbao: Study of the regeneration stage of the MTG process in a pseudoadiabatic fixed bed reactor. Chem. Eng. J. 92, 141 (2003).

    Article  CAS  Google Scholar 

  61. F.J. Keil: Methanol-to-hydrocarbons: process technology. Microporous Mesoporous Mater. 29, 49 (1999).

    Article  CAS  Google Scholar 

  62. M. Stöcker: Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous Mesoporous Mater. 29, 3 (1999).

    Article  Google Scholar 

  63. M. Bjørgen, S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga, and U. Olsbye: Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. J. Catal. 249, 195 (2007).

    Article  CAS  Google Scholar 

  64. Z.P. Liu, W.M. Fan, J.H. Ma, and R.F. Li: Adsorption, diffusion and catalysis of mesostructured zeolite HZSM-5. Adsorption 18, 493 (2012).

    Article  CAS  Google Scholar 

  65. S. Lee, H. Kim, and M. Choi: Controlled decationization of X zeolite: mesopore generation within zeolite crystallites for bulky molecular adsorption and transformation. J. Mater. Chem. A 1, 12096 (2013).

    Article  CAS  Google Scholar 

  66. J.H. Li, Y.N. Wang, W.Z. Jia, Z.W. Xi, H.H. Chen, Z.R. Zhu, and Z.H. Hu: Effect of external surface of HZSM-5 zeolite on product distribution in the conversion of methanol to hydrocarbons. J. Energy Chem. 23, 771 (2014).

    Article  Google Scholar 

  67. D. Fan, P. Tian, X. Su, Y.Y. Yuan, D.H. Wang, C. Wang, M. Yang, L.Y. Wang, S.T. Xu, and Z.M. Liu: Aminothermal synthesis of CHA-type SAPO molecular sieves and their catalytic performance in methanol to olefins (MTO) reaction. J. Mater. Chem. A 1, 14206 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work is supported by the National Natural Science Foundation of China-SinoPEC (No. U1463209), the National Natural Science Foundation of China (Nos. 21371129; 21376157; 51272169).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiajun Zheng or Ruifeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Sun, X., Du, Y. et al. Structural features of core–shell zeolite–zeolite composite and its performance for methanol conversion into gasoline and diesel. Journal of Materials Research 31, 2302–2316 (2016). https://doi.org/10.1557/jmr.2016.208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.208

Navigation