Skip to main content
Log in

Effect of preparing method of ZnO powders on electrical arc erosion behavior of Ag/ZnO electrical contact material

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Two kinds of Ag/ZnO electrical contact materials were fabricated by powder metallurgy method. The electrical life testing was done to investigate the arc erosion behavior of the prepared contact materials. Their properties and morphologies were characterized and discussed in detail. Results showed that Ag/ZnO(c) with coprecipitated ZnO as the second phase had better mechanical and electrical properties compared with Ag/ZnO(a) with ZnO purchased from Aladdin Industrial, Inc. Besides, some typical morphologies, such as holes, Ag or ZnO enrichment zone, Ag skeletons and bubbling area, occurred on the surface of the contacts. Especially for Ag/ZnO(c), vertically aligned ZnO nanorod arrays were detected after the life testing without any other supporting equipment. The existence of a solid solution Zn1-xAgxO and different energy generated during arcing process were possible reasons resulting in this phenomenon. A solid-vapor-solid mechanism was put forward to analyze the phenomenon mentioned above. These evidences could also offer some valuable information desired for reducing the splashing of Ag droplet under arcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

Similar content being viewed by others

References

  1. N. Benjemaa, J.L. Queffelec, and D. Travers: Some investigations on slow and fast arc voltage fluctuations for contact materials proceeding in various gases and direct current. IEEE Trans. Compon., Hybrids, Manuf. Technol. 14, 113 (1991).

    Google Scholar 

  2. C.P. Wu, D.Q. Yi, J. Li, L.R. Xiao, B. Wang, and F. Zheng: Investigation on microstructure and performance of Ag/ZnO contact material. J. Alloys Compd. 457, 565 (2008).

    CAS  Google Scholar 

  3. Y.S. Shen and L. Gould: A study on manufacturing silver metal oxide contacts from oxidized alloy powders. IEEE Trans. Compon., Hybrids, Manuf. Technol. 7, 39 (1984).

    Google Scholar 

  4. J.C. Chen, J.L. Sun, and Y. Du: European confederation restrictive policy of Ag-CdO materials and the development of other silver metal oxide electrical contact materials. J. Electr. Eng. Mater. 4, 4 (2002).

    Google Scholar 

  5. J.C. Gustafson and H.J. Kim: Arc-erosion studies of matrix-strengthened sliver-cadmium oxide. IEEE Trans. Compon., Hybrids, Manuf. Technol. 6, 122 (1983).

    Google Scholar 

  6. M. Ommer, U.E. Klotz, J. Fischer Bu, B. Kempf, and B. Wielage: Structure characterization of switched Ag-metal oxide contact materials. Materialwiss. Werkstofftech. 39, 928 (2008).

    CAS  Google Scholar 

  7. D. Guzmán, P. Munoz, C. Aguilar, I. Iturriza, L. Lozada, P.A. Rojas, M. Thirumurugan, and C. Martinez: Synthesis of Ag–ZnO powders by means of a mechanochemical process. Appl. Phys. A 117, 871 (2014).

    Google Scholar 

  8. G. Zhang, Y. Cao, and L. Qi: Single point cutting of machinable glass ceramics. Tech Paper - Soc. Manuf. Eng. MR 99-170, SME (1999), 1–6.

  9. Q. Zhang, D. Li, X.Y. Ding, and Y.M. Zhang: Electrochemical mechanism of intergranular corrosion in LC4 aluminum alloy. Materials Protection 8, 6 (1996).

    Google Scholar 

  10. E. Hetzmannseder and W.F. Rieder: Make-and-break erosion of Ag/MeO contacts materials. IEEE Trans. Compon., Hybrids, Manuf. Technol. 19, 397 (1996).

    CAS  Google Scholar 

  11. E. Hetzmannseder and W.F. Rieder: The influence of bounce parameters on the make erosion of silver/metal-oxide contact materials. IEEE Trans. Compon., Hybrids, Manuf. Technol. 19, 397 (1994).

    Google Scholar 

  12. W.F. Rieder: Low current arc modes of short length and time: A review. IEEE Trans. Compon., Hybrids, Manuf. Technol. 23, 286 (2000).

    CAS  Google Scholar 

  13. L. Doublet, N. BenJem, F. Hauner, and D. Jeannot: Make arc erosion and welding tendency under 42 VDC in automotive area. IEEE Trans. Compon., Hybrids, Manuf. Technol. 26, 162 (2003).

    Google Scholar 

  14. S. Gavriliu, M. Lungu, E. Enescu, S. Nitu, and D. Patroi: A comparative study concerning the obtaining and using of some Ag-CdO, Ag-ZnO and Ag-SnO2 sintered electrical contact materials. Optoelectron. Adv. Mater., Rapid Commun. 3, 688 (2009).

    CAS  Google Scholar 

  15. V. Mayer and R. Michal: Switching behavior and changes in microstructures of silver-metal oxide contact materials. In Proceedings of 14th ICECP (San Francisco, 1988); pp. 361–367.

    Google Scholar 

  16. R. Mingzhe and W. Qiping: Surface dynamics and its reaction to the effect of breaking arc for AgMeO contacts. In Proceedings of 16th ICECP (Philadelphia, 1992); pp. 389–393.

  17. Z. Xinjian and W. Qiping: Tthe types and the formation mechanisms of AgNi contacts morphology due to breaking arc erosion. In Proceedings of 39th Holm Conference on Electrical Contacts (Pittsburgh, 1993); pp. 97–102.

  18. T.J. Schoepf, V. Behrens, T. Honig, and A. Kraus: Development of silver zinc oxide for general-purpose relays. IEEE Trans. Compon., Hybrids, Manuf. Technol. 25, 656 (2002).

  19. J-W. Wan, J-G. Zhang, and M-Z. Rong: Adjustment state and quasi-steady state of structure and composition of agmeo contacts by breaking arcs. IEEE Trans. Compon., Hybrids, Manuf. Technol. 20, 202 (1998).

    Google Scholar 

  20. T.J. Schoepf and F. Hauner: Effects of different loads on the surface of silver metal oxide contacts for general-purpose relays. IEEE Trans. Compon., Hybrids, Manuf. Technol. 28, 728 (2005).

    Google Scholar 

  21. A.P. Alivisatos: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).

    CAS  Google Scholar 

  22. Y. Chen, D.M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T.J. Yao: Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization. Appl. Phys. Lett. 84, 3912 (1998).

    CAS  Google Scholar 

  23. C.M. Lieber: One-dimensional nanostructures: Chemistry, physics & applications. Solid State Commun. 107, 607 (1998).

    CAS  Google Scholar 

  24. Y. Zhang and F. Liu: End to end assembly of CaO and ZnO nanosheets to propeller-shaped architectures by orientation attachment approaches. J. Cryst. Growth 420, 94 (2015).

    CAS  Google Scholar 

  25. A.B. Suriania, R.N. Safitri, A. Mohamed, S. Alfarisa, I.M. Isa, A. Kamari, N. Hashim, M.K. Ahmad, M.F. Malek, and M. Rusop: Enhanced field electron emission of flower-like zinc oxide on zinc oxide nano-rods grown on carbon nanotubes. Mater. Lett. 149, 66 (2015).

    Google Scholar 

  26. Ž. Petrović, M. Ristić, S. Musić, and M. Fabián: Nano/microstructure and optical properties of ZnO particles precipitated from zinc acetylacetonate. J. Mol. Struct. 1090, 121 (2015).

    Google Scholar 

  27. S. Zhang, C. Yan, H. Zhang, and G. Lu: Effects of bath temperature on the morphology of ZnO nano-rods and its optical properties. Mater. Lett. 148, 1 (2015).

    CAS  Google Scholar 

  28. M. Hadioui, V. Merdzan, and K.J. Wilkinson: Detection and characterization of ZnO nanoparticles in surface and iste waters using single particle ICPMS. Environ. Sci. Technol. 10, 6141 (2015).

    Google Scholar 

  29. H. Zhang, D.R. Yang, D.S. Li, X.Y. Ma, S.Z. Li, and D.L. Que: Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process. Cryst. Growth Des. l5, 547 (2005).

    Google Scholar 

  30. H.Q. Wang, N. Koshizaki, L. Li, L.C. Jia, K. Kawaguchi, and X.Y. Li: Size-tailored ZnO submicrometer spheres: Bottom-up construction, size-related optical extinction, and selective aniline trapping. Adv. Mater. 23, 1865 (2011).

    CAS  Google Scholar 

  31. K. Chennakesavulu, M. Madhusudhana Reddy, G. Ramanjaneya Reddy, A.M. Rabel, J. Brijitta, V. Vinita, T. Sasipraba, and J. Sreeramulu: Synthesis, characterization and photo catalytic studies of the composites by tantalum oxide and zinc oxide nano-rods. J. Mol. Struct. 1091, 49 (2015).

    CAS  Google Scholar 

  32. S-M. Lam, J-C. Sin, A.Z. Abdullah, and A.R. Mohamed: Sunlight responsive WO3/ZnO nano-rods for photocatalytic degradation and mineralization of chlorinated phenoxyacetic acid herbicides in water. J. Colloid Interface Sci. 450, 34 (2015).

    CAS  Google Scholar 

  33. R. Kumar, A. Umar, G. Kumar, M.S. Akhtar, Y. Wang, and S.H. Kim: Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceram. Int. 41, 7773 (2015).

    CAS  Google Scholar 

  34. A. Chelouche, T. Touam, D. Djouadi, and A. Aksas: Synthesis and characterizations of new morphological ZnO and Ce-doped ZnO powders by sol–gel process. Optik 125, 5626 (2014).

    CAS  Google Scholar 

  35. S. Ravindran, G.T. Senthil Andavan, and C. Ozkan: Selective and controlled self-assembly of zinc oxide hollow spheres on bundles of single-walled carbon nanotube templates. Nanotechnology 17, 723 (2006).

    CAS  Google Scholar 

  36. X.F. Zhou, S.Y. Chen, D.Y. Zhang, X.F. Guo, W.P. Ding, and Y. Chen: Microsphere organization of nano-rods directed by PEG linear polymer. Langmuir 22, 383 (2006).

    Google Scholar 

  37. J.G. Yu and X.X. Yu: Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ. Sci. Technol. 42, 4902 (2008).

    CAS  Google Scholar 

  38. X.Y. Zhang, J.Y. Dai, H.C. Ong, N. Wang, H.L.W. Chan, and C.L. Choy: Hydrothermal synthesis of oriented ZnO nanobelts and their temperature dependent photoluminescence. Chem. Phys. Lett. 393, 7 (2004).

    Google Scholar 

  39. Y-C. Chen, J. Cheng, J. Cheng, and S. Cheng: l-Arginine assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance. J. Mater. Sci.: Mater. Electron. 26, 2775 (2015).

    CAS  Google Scholar 

  40. J. Ambier, C. Bourda, D. Jeannot, J. Pinard, and P. Ramoni: Modification in the microstructure of materials with air-break switching at high currents. IEEE Trans. Compon., Hybrids, Manuf. Technol. 14, 153 (1991).

    CAS  Google Scholar 

  41. B-J. Wang and N. Saka: Spark erosion behavior of silver-based particulate composites. Wear 195, 133 (1996).

    CAS  Google Scholar 

  42. I.V. Galinov and R.B. Luban: Mass transfer trends during electro spark alloying. Surf. Coat. Technol. 79, 9 (1996).

    CAS  Google Scholar 

  43. I. Basak and A. Ghosh: Mechanism of material removal in electrochemical discharge machining: A theoretical model and experiment. J. Mater. Process. Technol. 17, 350 (1997).

    Google Scholar 

  44. N. Benjmeaa, L. Nedelec, S. Benhenda, and J. Neveu: Anodic and cathodic erosion of Ag, Ag alloys and Ag-MeO contact materials in energy range below 10 Joules. In Proceedings of the 42nd IEEE Holm Conference On Electric Contacts (IEEE, Chicago, 1996); pp. 70–74.

    Google Scholar 

  45. N. Benjmeaa, L. Doublet, L. Morin, and D. Jeannot: Break arc study for the new electrical level of 42 V in automotive application. Proceedings of the 47th IEEE Holm Conference On Electric Contacts (IEEE, Montreal, 2001); pp. 50–55.

    Google Scholar 

  46. N. Benjmeaa, L. Doublet, T. Schoepf, F. Hauner, and D. Jeannot: Arc duration and contact erosion in an automotive 42 VDC network. In Proceedings of the 50th International Relay Conference (IEEE, California, 2002); pp. 5.1–5.7.

    Google Scholar 

  47. L. Morin, N. Benjmeaa, D. Jeannot, and H. Sone: Transition from the anodic arc phase to the cathodic metallic arc phase in vacuum at low DC electrical level. In Proceedings of the 47th IEEE Holm Conference On Electric Contacts (IEEE, Montreal, 2001); pp. 88–93.

    Google Scholar 

  48. G.I.N. Waterhouse, G.A. Bowmaker, and J.B. Metson: The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study. Phys. Chem. Chem. Phys. 3, 3838 (2001).

    CAS  Google Scholar 

  49. D. Bekermann, A. Gasparotto, D. Barreca, L. Bovo, A. Devi, R.A. Fischer, O.I. Lebedev, C. Maccato, E. Tondello, and G.V. Tendeloo: Highly oriented ZnO nanorod arrays by a novel plasma chemical vapor deposition process. J. Cryst. Growth 10, 2011 (2010).

    CAS  Google Scholar 

  50. J. Swingler and J.W. McBride: The erosion and arc characteristics of Ag-CdO and Ag-SnO2 contact materials under DC break conditions. IEEE Trans. Compon., Hybrids, Manuf. Technol. 19, 404 (1996).

    CAS  Google Scholar 

  51. R. Kossowsky and P.G. Slade: Effect of arcing on the micro-structure and morphology of Ag-CdO. IEEE Trans. Compon., Hybrids, Manuf. Technol. 1, 39 (1973).

    Google Scholar 

  52. R. Michal and K.E. Saeger: Application of silver-based contact materials in air-break switching devices for power engineering. IEEE Trans. Compon., Hybrids, Manuf. Technol. 19, 121 (1996).

    Google Scholar 

  53. S.Y. Chang, C.J. Hsu, C.H. Hsu, and S.J. Lin: Investigation on the arc erosion behavior of new silver matrix composites: Part I. Reinforced by particles. J. Mater. Res. 18, 804 (2003).

    CAS  Google Scholar 

  54. C.J. Hsu, S.Y. Chang, L.Y. Chou, and S.J. Lin: Investigation on the arc erosion behavior of new silver matrix composites: Part II. Reinforced by short fibers. J. Mater. Res. 18, 817 (2003).

    CAS  Google Scholar 

  55. Y.C. Zhu, J.Q. Wang, and H.T. Wang: Study on arc erosion resistance properties of nano-AgSnO2 electrical contact materials doped with Bi. Rare Met. Mater. Eng. 42, 149 (2013).

    CAS  Google Scholar 

  56. S. Biyik, F. Arslan, and M. Aydin: Arc-erosion behavior of boric oxide-reinforced silver-based electrical contact materials produced by mechanical alloying. J. Electron. Mater. 44, 457 (2015).

    CAS  Google Scholar 

  57. A. Umar, S.H. Kim, Y.S. Lee, K.S. Nahm, and Y.B. Hahn: Catalyst-free large-quantity synthesis of ZnO nano-rods by a vapor–solid growth mechanism: Structural and optical properties. J. Cryst. Growth 282, 131 (2005).

    CAS  Google Scholar 

  58. T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, and W.E. Buhro: Solution-liquid-solid growth of crystalline III-V semiconductors: An analogy to vapor-liquid-solid growth. Science 270, 1791 (1995).

    CAS  Google Scholar 

  59. Y. Tak and K. Yong: Controlled growth of well-aligned ZnO nano-rod array using a novel solution method. J. Phys. Chem. B 109, 19263 (2003).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National High-Tech Research and Development Program of China (863 Program) (No. 2013AA031803) and Special Fund for Postdoctor of Zhejiang Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingjie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Zhang, L., Yang, H. et al. Effect of preparing method of ZnO powders on electrical arc erosion behavior of Ag/ZnO electrical contact material. Journal of Materials Research 31, 468–479 (2016). https://doi.org/10.1557/jmr.2016.20

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.20

Navigation