Skip to main content
Log in

Photoluminescence of (La,Eu)2O2SO4 red-emitting phosphors derived from layered hydroxide

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Red-emitting (La,Eu)2O2SO4 phosphors have been successfully prepared using the layered hydroxide of (La,Eu)2(OH)4SO4·2H2O as the precursor. The precursor compound was firstly crystallized via hydrothermal reaction (100 °C and pH = 9.0) as well-dispersed nanoplates, followed by dehydration and dehydroxylation in the 400–1200 °C temperature range in ambient air to yield (La,Eu)2O2SO4. The phosphors show intense red emissions originated from the ff transitions of Eu3+, dominantly peaking at 617 nm, under O–Eu charge transfer excitation at 284 nm. The optimal Eu3+ content was experimentally determined to be 5 at.%, agreeing well with theoretical analysis, and the concentration quenching of luminescence was suggested to be due to exchange interactions. Fluorescence decay analysis indicates that a higher calcination temperature or Eu3+ content would decrease the lifetime of the 617 nm emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M. Machida, K. Kawamura, K. Ito, and K. Ikeue: Large-capacity oxygen storage by lanthanide oxysulfate/oxysulfide systems. Chem. Mater. 17(6), 1487 (2005).

    Article  CAS  Google Scholar 

  2. M. Machida, T. Kawano, M. Eto, D.J. Zhang, and K. Ikeue: Ln dependence of the large-capacity oxygen storage/release property of Ln oxysulfate/oxysulfide systems. Chem. Mater. 19(4), 954 (2007).

    Article  CAS  Google Scholar 

  3. J.D. Lessard, I. Valsamakis, and M. Flytzani-Stephanopoulos: Novel Au/La2O3 and Au/La2O2SO4 catalysts for the water–gas shift reaction prepared via an anion adsorption method. Chem. Commun. 48(40), 4857 (2012).

    Article  CAS  Google Scholar 

  4. I. Valsamakis and M. Flytzani-Stephanopoulos: Sulfur-tolerant lanthanide oxysulfide catalysts for the high-temperature water-gas shift reaction. Appl. Catal., B 106(1–2), 255 (2011).

    CAS  Google Scholar 

  5. S. Yamamoto, S. Tamura, and N. Imanaka: New type of potassium ion conducting solid based on lanthanum oxysulfate. J. Alloys Compd. 418(1–2), 226 (2006).

    Article  CAS  Google Scholar 

  6. J.B. Lian, X.D. Sun, Z.G. Liu, J.Y. Yu, and X.D. Li: Synthesis and optical properties of (Gd1−xEux)2O2SO4 nano-phosphors by a novel co-precipitation method. Mater. Res. Bull. 44(9), 1822 (2009).

    Article  CAS  Google Scholar 

  7. J.B. Lian, P. Liang, B.X. Wang, and F. Liu: Homogeneous precipitation synthesis and photoluminescence properties of La2O2SO4:Eu3+ quasi-spherical phosphors. J. Ceram. Process. Res. 15(6), 382 (2014).

    Google Scholar 

  8. G. Chen, F.S. Chen, X.H. Liu, W. Ma, H.M. Luo, J.H. Li, R.Z. Ma, and G.Z. Qiu: Hollow spherical rare-earth-doped yttrium oxysulfate: A novel structure for upconversion. Nano Res. 7(8), 1093 (2014).

    Article  CAS  Google Scholar 

  9. L.X. Song, X.L. Shao, P.F. Du, H.B. Cao, Q. Hui, T.H. Xing, and J. Xiong: A facile preparation and the luminescent properties of Eu3+-doped Y2O2SO4 nanopieces. Mater. Res. Bull. 48(11), 4896 (2013).

    Article  CAS  Google Scholar 

  10. T. Kijima, T. Shinbori, M. Sekita, M. Uota, and G. Sakai: Abnormally enhanced Eu3+ emission in Y2O2SO4:Eu3+ inherited from their precursory dodecyl sulfate-templated concentric-layered nanostructure. J. Lumin. 128(3), 311 (2008).

    Article  CAS  Google Scholar 

  11. J.G. Li, X.D. Li, X.D. Sun, and T. Ishigaki: Monodispersed colloidal spheres for uniform Y2O3:Eu3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping. J. Phys. Chem. C 112(31), 11707 (2008).

    Article  CAS  Google Scholar 

  12. A.M. Srivastava, A.A. Setlur, H.A. Comanzo, Y. Gao, M.E. Hannah, J.A. Hughes, and U. Happek: Optical spectroscopy and thermal quenching of the Ce3+ luminescence in yttrium oxysulfate, Y2O2[SO4]. Opt. Mater. 30(10), 1499 (2008).

    Article  CAS  Google Scholar 

  13. X.J. Wang, J.G. Li, Q. Zhu, X.D. Li, X.D. Sun, and Y. Sakka: Synthesis, characterization, and photoluminescent properties of (La0.95Eu0.05)2O2SO4 red phosphors with layered hydroxyl sulfate as precursor. J. Alloys Compd. 603(1), 28 (2014).

    Article  CAS  Google Scholar 

  14. K. Ohkubo and T. Shigeta: Absolute fluorescent quantum efficiency of NBS phosphor standard samples. J. Illum. Eng. Inst. Japan 83, 87 (1999).

    Article  Google Scholar 

  15. L. Wang, X.J. Wang, T. Kohsei, K. Yoshimura, M. Izumi, N. Hirosaki, and R-J. Xie: Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays. Opt. Express 23(22), 28707 (2015).

    Article  CAS  Google Scholar 

  16. F.X. Geng, R.Z. Ma, Y. Matsushita, J.B. Liang, Y. Michiue, and T. Sasaki: Structural study of a series of layered rare-earth hydroxide sulfates. Inorg. Chem. 50(40), 6667 (2011).

    Article  CAS  Google Scholar 

  17. R.D. Shannon: Revised effective ionic radii and systematic studies of inter atomic distances in halides and chaleogenides. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. A32, 751 (1976).

    Article  CAS  Google Scholar 

  18. M. Shoji and K. Sakurai: A versatile scheme for preparing single-phase yttrium oxysulfate phosphor. J. Alloys Compd. 426(1–2), 244 (2006).

    Article  CAS  Google Scholar 

  19. J.A. Gadsden: Infrared Spectra of Minerals and Related Inorganic Compounds (Butterworth, Newton, MA, 1975); pp. 15, 27.

    Google Scholar 

  20. N. Imanaka, T. Masui, and Y. Kato: Preparation of the cubic-type La2O3 phase by thermal decomposition of LaI3. J. Solid State Chem. 178(1), 395 (2005).

    Article  CAS  Google Scholar 

  21. L. Li and S.Y. Zhang: Dependence of charge transfer energy on crystal structure and composition in Eu3+-doped compounds. J. Phys. Chem. B 110(43), 21438 (2006).

    Article  CAS  Google Scholar 

  22. V. Đorđević, Ž. Antićn, M.G. Nikolić, and M.D. Dramićanin: Comparative structural and photoluminescent study of Eu3+-doped La2O3 and La(OH)3nanocrystallinepowders. J. Phys. Chem. Solids 75(2), 276 (2014).

    Article  Google Scholar 

  23. J.G. Li and Y. Sakka: Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12). Sci. Technol. Adv. Mater. 16(1), 014902 (2015).

    Article  Google Scholar 

  24. N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R.P.S. Chakradhar: Hydrothermal synthesis, characterization and Raman studies of Eu3+ activated Gd2O3 nanorods. Phys. B 406(9), 1639 (2011).

    Article  CAS  Google Scholar 

  25. A.S. Souza and M.A. Couto Dos Santos: The J-mixing effect in Ln3+ ions crystal field levels. Chem. Phys. Lett. 521, 138 (2012).

    Article  CAS  Google Scholar 

  26. H.P. Ji, Z.H. Huang, Z.G. Xia, M.S. Molokeev, X.X. Jiang, Z.S. Lin, and V.V. Atuchin: Comparative investigations of the crystal structure and photoluminescence property of eulytite-type Ba3Eu(PO4)3 and Sr3Eu(PO4)3. Dalton Trans. 44(16), 7679 (2015).

    Article  CAS  Google Scholar 

  27. M. Inokuti and F. Hirayama: Influence of energy transfer by the exchange mechanism on donor luminescence. J. Chem. Phys. 43(6), 1978 (1965).

    Article  CAS  Google Scholar 

  28. B. Lu, J.G. Li, and Y. Sakka: Controlled processing of (Gd,Ln)2O3:Eu (Ln = Y, Lu) red phosphor particles and compositional effects on photoluminescence. Sci. Technol. Adv. Mater. 14(6), 064202 (2013).

    Article  Google Scholar 

  29. S. Huang and L. Lou: Concentration dependence of sensitizer fluorescence intensity in energy transfer. Chin. J. Lumin. 11(1), 1 (1990).

    Google Scholar 

  30. Q.L. Dai, H.W. Song, M.Y. Wang, X. Bai, B. Dong, R.F. Qin, X.S. Qu, and H. Zhang: Size and concentration effects on the photoluminescence of La2O2S:Eu3+ nanocrystals. J. Phys. Chem. C 112(49), 19399 (2008).

    Article  CAS  Google Scholar 

  31. L. Ozawa: Determination of self-concentration quenching mechanisms of rare earth luminescence from intensity measurements on powdered phosphor screens. J. Electrochem. Soc. 126(1), 106 (1979).

    Article  CAS  Google Scholar 

  32. L. Zhang, Z. Lu, H. Yang, P.D. Han, N.C. Xu, and Q.T. Zhang: Preparation of Dy3+-activated strontium orthosilicate (Sr2SiO4:Dy3+) phosphors and its photoluminescent properties. J. Alloys Compd. 512(1), 5 (2012).

    Article  CAS  Google Scholar 

  33. M. Upasani, B. Butey, and S.V. Moharil: Synthesis, characterization and optical properties of Y3Al5O12:Ce phosphor by mixed fuel combustion synthesis. J. Alloys Compd. 650(1), 858 (2015).

    Article  CAS  Google Scholar 

  34. C. Fouassier, B. Saubat, and P. Hagenmuller: Self-quenching of Eu3+ and Tb3+ luminescence in LaMgB5O10: A host structure allowing essentially one-dimensional interactions. J. Lumin. 23(3–4), 405 (1981).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work is supported in part by the National Natural Science Foundation of China (Grants No. 51172038, 51302032, and U1302272), the Fundamental Research Fund for Central Universities (Grants No. N140204002 and L1502046), and Grants-in-Aid for Scientific Research (JSPS KAKENHI No. 26420686). X.J. Wang acknowledges the financial support from the China Scholarship Council for overseas Ph. D. study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Guang Li.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, JG., Zhu, Q. et al. Photoluminescence of (La,Eu)2O2SO4 red-emitting phosphors derived from layered hydroxide. Journal of Materials Research 31, 2268–2276 (2016). https://doi.org/10.1557/jmr.2016.185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.185

Navigation