Abstract
Red-emitting (La,Eu)2O2SO4 phosphors have been successfully prepared using the layered hydroxide of (La,Eu)2(OH)4SO4·2H2O as the precursor. The precursor compound was firstly crystallized via hydrothermal reaction (100 °C and pH = 9.0) as well-dispersed nanoplates, followed by dehydration and dehydroxylation in the 400–1200 °C temperature range in ambient air to yield (La,Eu)2O2SO4. The phosphors show intense red emissions originated from the f–f transitions of Eu3+, dominantly peaking at 617 nm, under O–Eu charge transfer excitation at 284 nm. The optimal Eu3+ content was experimentally determined to be 5 at.%, agreeing well with theoretical analysis, and the concentration quenching of luminescence was suggested to be due to exchange interactions. Fluorescence decay analysis indicates that a higher calcination temperature or Eu3+ content would decrease the lifetime of the 617 nm emission.
Similar content being viewed by others
References
M. Machida, K. Kawamura, K. Ito, and K. Ikeue: Large-capacity oxygen storage by lanthanide oxysulfate/oxysulfide systems. Chem. Mater. 17(6), 1487 (2005).
M. Machida, T. Kawano, M. Eto, D.J. Zhang, and K. Ikeue: Ln dependence of the large-capacity oxygen storage/release property of Ln oxysulfate/oxysulfide systems. Chem. Mater. 19(4), 954 (2007).
J.D. Lessard, I. Valsamakis, and M. Flytzani-Stephanopoulos: Novel Au/La2O3 and Au/La2O2SO4 catalysts for the water–gas shift reaction prepared via an anion adsorption method. Chem. Commun. 48(40), 4857 (2012).
I. Valsamakis and M. Flytzani-Stephanopoulos: Sulfur-tolerant lanthanide oxysulfide catalysts for the high-temperature water-gas shift reaction. Appl. Catal., B 106(1–2), 255 (2011).
S. Yamamoto, S. Tamura, and N. Imanaka: New type of potassium ion conducting solid based on lanthanum oxysulfate. J. Alloys Compd. 418(1–2), 226 (2006).
J.B. Lian, X.D. Sun, Z.G. Liu, J.Y. Yu, and X.D. Li: Synthesis and optical properties of (Gd1−xEux)2O2SO4 nano-phosphors by a novel co-precipitation method. Mater. Res. Bull. 44(9), 1822 (2009).
J.B. Lian, P. Liang, B.X. Wang, and F. Liu: Homogeneous precipitation synthesis and photoluminescence properties of La2O2SO4:Eu3+ quasi-spherical phosphors. J. Ceram. Process. Res. 15(6), 382 (2014).
G. Chen, F.S. Chen, X.H. Liu, W. Ma, H.M. Luo, J.H. Li, R.Z. Ma, and G.Z. Qiu: Hollow spherical rare-earth-doped yttrium oxysulfate: A novel structure for upconversion. Nano Res. 7(8), 1093 (2014).
L.X. Song, X.L. Shao, P.F. Du, H.B. Cao, Q. Hui, T.H. Xing, and J. Xiong: A facile preparation and the luminescent properties of Eu3+-doped Y2O2SO4 nanopieces. Mater. Res. Bull. 48(11), 4896 (2013).
T. Kijima, T. Shinbori, M. Sekita, M. Uota, and G. Sakai: Abnormally enhanced Eu3+ emission in Y2O2SO4:Eu3+ inherited from their precursory dodecyl sulfate-templated concentric-layered nanostructure. J. Lumin. 128(3), 311 (2008).
J.G. Li, X.D. Li, X.D. Sun, and T. Ishigaki: Monodispersed colloidal spheres for uniform Y2O3:Eu3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping. J. Phys. Chem. C 112(31), 11707 (2008).
A.M. Srivastava, A.A. Setlur, H.A. Comanzo, Y. Gao, M.E. Hannah, J.A. Hughes, and U. Happek: Optical spectroscopy and thermal quenching of the Ce3+ luminescence in yttrium oxysulfate, Y2O2[SO4]. Opt. Mater. 30(10), 1499 (2008).
X.J. Wang, J.G. Li, Q. Zhu, X.D. Li, X.D. Sun, and Y. Sakka: Synthesis, characterization, and photoluminescent properties of (La0.95Eu0.05)2O2SO4 red phosphors with layered hydroxyl sulfate as precursor. J. Alloys Compd. 603(1), 28 (2014).
K. Ohkubo and T. Shigeta: Absolute fluorescent quantum efficiency of NBS phosphor standard samples. J. Illum. Eng. Inst. Japan 83, 87 (1999).
L. Wang, X.J. Wang, T. Kohsei, K. Yoshimura, M. Izumi, N. Hirosaki, and R-J. Xie: Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays. Opt. Express 23(22), 28707 (2015).
F.X. Geng, R.Z. Ma, Y. Matsushita, J.B. Liang, Y. Michiue, and T. Sasaki: Structural study of a series of layered rare-earth hydroxide sulfates. Inorg. Chem. 50(40), 6667 (2011).
R.D. Shannon: Revised effective ionic radii and systematic studies of inter atomic distances in halides and chaleogenides. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. A32, 751 (1976).
M. Shoji and K. Sakurai: A versatile scheme for preparing single-phase yttrium oxysulfate phosphor. J. Alloys Compd. 426(1–2), 244 (2006).
J.A. Gadsden: Infrared Spectra of Minerals and Related Inorganic Compounds (Butterworth, Newton, MA, 1975); pp. 15, 27.
N. Imanaka, T. Masui, and Y. Kato: Preparation of the cubic-type La2O3 phase by thermal decomposition of LaI3. J. Solid State Chem. 178(1), 395 (2005).
L. Li and S.Y. Zhang: Dependence of charge transfer energy on crystal structure and composition in Eu3+-doped compounds. J. Phys. Chem. B 110(43), 21438 (2006).
V. Đorđević, Ž. Antićn, M.G. Nikolić, and M.D. Dramićanin: Comparative structural and photoluminescent study of Eu3+-doped La2O3 and La(OH)3nanocrystallinepowders. J. Phys. Chem. Solids 75(2), 276 (2014).
J.G. Li and Y. Sakka: Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12). Sci. Technol. Adv. Mater. 16(1), 014902 (2015).
N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, C. Shivakumara, and R.P.S. Chakradhar: Hydrothermal synthesis, characterization and Raman studies of Eu3+ activated Gd2O3 nanorods. Phys. B 406(9), 1639 (2011).
A.S. Souza and M.A. Couto Dos Santos: The J-mixing effect in Ln3+ ions crystal field levels. Chem. Phys. Lett. 521, 138 (2012).
H.P. Ji, Z.H. Huang, Z.G. Xia, M.S. Molokeev, X.X. Jiang, Z.S. Lin, and V.V. Atuchin: Comparative investigations of the crystal structure and photoluminescence property of eulytite-type Ba3Eu(PO4)3 and Sr3Eu(PO4)3. Dalton Trans. 44(16), 7679 (2015).
M. Inokuti and F. Hirayama: Influence of energy transfer by the exchange mechanism on donor luminescence. J. Chem. Phys. 43(6), 1978 (1965).
B. Lu, J.G. Li, and Y. Sakka: Controlled processing of (Gd,Ln)2O3:Eu (Ln = Y, Lu) red phosphor particles and compositional effects on photoluminescence. Sci. Technol. Adv. Mater. 14(6), 064202 (2013).
S. Huang and L. Lou: Concentration dependence of sensitizer fluorescence intensity in energy transfer. Chin. J. Lumin. 11(1), 1 (1990).
Q.L. Dai, H.W. Song, M.Y. Wang, X. Bai, B. Dong, R.F. Qin, X.S. Qu, and H. Zhang: Size and concentration effects on the photoluminescence of La2O2S:Eu3+ nanocrystals. J. Phys. Chem. C 112(49), 19399 (2008).
L. Ozawa: Determination of self-concentration quenching mechanisms of rare earth luminescence from intensity measurements on powdered phosphor screens. J. Electrochem. Soc. 126(1), 106 (1979).
L. Zhang, Z. Lu, H. Yang, P.D. Han, N.C. Xu, and Q.T. Zhang: Preparation of Dy3+-activated strontium orthosilicate (Sr2SiO4:Dy3+) phosphors and its photoluminescent properties. J. Alloys Compd. 512(1), 5 (2012).
M. Upasani, B. Butey, and S.V. Moharil: Synthesis, characterization and optical properties of Y3Al5O12:Ce phosphor by mixed fuel combustion synthesis. J. Alloys Compd. 650(1), 858 (2015).
C. Fouassier, B. Saubat, and P. Hagenmuller: Self-quenching of Eu3+ and Tb3+ luminescence in LaMgB5O10: A host structure allowing essentially one-dimensional interactions. J. Lumin. 23(3–4), 405 (1981).
ACKNOWLEDGMENT
This work is supported in part by the National Natural Science Foundation of China (Grants No. 51172038, 51302032, and U1302272), the Fundamental Research Fund for Central Universities (Grants No. N140204002 and L1502046), and Grants-in-Aid for Scientific Research (JSPS KAKENHI No. 26420686). X.J. Wang acknowledges the financial support from the China Scholarship Council for overseas Ph. D. study.
Author information
Authors and Affiliations
Corresponding author
Supplementary Material
Rights and permissions
About this article
Cite this article
Wang, X., Li, JG., Zhu, Q. et al. Photoluminescence of (La,Eu)2O2SO4 red-emitting phosphors derived from layered hydroxide. Journal of Materials Research 31, 2268–2276 (2016). https://doi.org/10.1557/jmr.2016.185
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2016.185