Skip to main content
Log in

Non-equilibrium tunneling through Au–C20–Au molecular bridge using density functional theory–non-equilibrium Green function approach

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, we determine the electronic transport properties of Au–C20–Au molecular system under finite bias voltage using the non-equilibrium Green function and the density functional theory, along its localized pseudo atomic orbitals. Our aim is to peruse the various nanometer-scale transport properties and eventually predict the overall quantum transport behavior of this organic mesoscopic system. We investigate the density of states, transmission spectrum, molecular orbitals, current–voltage characteristics, rectification ratio, and differential conductance characteristics at discrete bias voltages to get the insight about various transport phenomena. The observed results elucidate that the quantum tunneling causes the electron transport in this molecular bridge and becomes prominent due to strong mechanical interactive coupling between the molecule and the electrodes having low HOMO–LUMO (highest occupied molecular orbital–lowest unoccupied molecular orbital) gap of 0.55 eV. We conclude that Au–C20–Au device exhibited metallic nature forming the current coulomb staircase with transition points at ±1 V and the quantum conductance of order 2G0 at low bias voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14

Similar content being viewed by others

References

  1. R.P. Feynman: There’s plenty of room at the bottom. Caltech Engg. Sci. 23 (5), 22 (1960).

    Google Scholar 

  2. M. Kaur, R.S. Sawhney, and D. Engles: Contemplating transport characteristics by augmenting the length of molecule. J. Multiscale Modell. 5 (3), 1350010 (2013).

    Article  CAS  Google Scholar 

  3. T. Rakshit, G.C. Liang, A.W. Ghosh, and S. Datta: Silicon-based molecular electronics. Nano Lett. 4, 1803 (2004).

    Article  CAS  Google Scholar 

  4. G.C. Liang and A.W. Ghosh: Identifying contact effects in electronic conduction through C60 on silicon. Phys. Rev. Lett. 95, 076403 (2005).

    Article  CAS  Google Scholar 

  5. B. Muralidharan, A.W. Ghosh, and S. Datta: Probing electronic excitations in molecular conduction. Phys. Rev. B: Condens. Matter Mater. Phys. 73, 155410 (2006).

    Article  CAS  Google Scholar 

  6. J. Chen, W. Wang, M.A. Reed, A.M. Rawlett, D.W. Price, and J.M. Tour: Room-temperature negative differential resistance in nanoscale molecular junctions. Appl. Phys. Lett. 77 (8), 1224 (2000).

    Article  CAS  Google Scholar 

  7. S. Datta: Electronic Transport in Mesoscopic Systems, 1st ed. (Cambridge Univ. Press, Cambridge, England, 1995); pp. 266–268.

    Book  Google Scholar 

  8. P.S. Damle, A.W. Ghosh, and S. Datta: From molecules to metallic wires: Unified description of molecular conduction. Phys. Rev. B: Condens. Matter Mater. Phys. 64, 201403 (2001).

    Article  CAS  Google Scholar 

  9. Z. Yang, L. Wan, Y. Yu, Y. Wei, and J. Wang: Electron transport through Al–ZnO–Al: An ab initio calculation. J. Appl. Phys. 108, 033704 (2010).

    Article  CAS  Google Scholar 

  10. W. Wang, T. Lee, and M.A. Reed: Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys. Rev. B: Condens. Matter Mater. Phys. 68, 035416 (2003).

    Article  CAS  Google Scholar 

  11. S. Ke, H.U. Baranger, and W. Yang: Contact atomic structure and electron transport through molecules. J. Chem. Phys. 122, 074704 (2005).

    Article  CAS  Google Scholar 

  12. M. Kaur, R.S. Sawhney, and D. Engles: Perusing quantum transport through geometric gold electrodes in flexible electronics. Quantum Matter 4 (2), 182 (2015).

    Article  Google Scholar 

  13. D.Q. Andrews, R. Cohen, R.P.V. Duyne, and M.A. Ratner: Single molecule electron transport junctions: Charging and geometric effects on conductance. J. Chem. Phys. 125, 174718 (2006).

    Article  CAS  Google Scholar 

  14. Y.C. Choi, W.Y. Kim, K. Park, P. Tarakeshwar, K.S. Kim, T. Kim, and J.Y. Lee: Role of molecular orbitals of the benzene in electronic nanodevices. J. Chem. Phys. 122, 094706 (2005).

    Article  CAS  Google Scholar 

  15. M. Kaur and R.S. Sawhney: Anatomizing electronic transport through saturated alkane molecule with disparate terminal elements. J. Multiscale Modell. 4 (3), 1250011 (2012).

    Article  CAS  Google Scholar 

  16. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley: C60: Buckminsterfullerene. Nature 318, 162, (1985).

    Article  CAS  Google Scholar 

  17. W. Krätschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffman: Solid C60: A new form of carbon. Nature 347, 354 (1990).

    Article  Google Scholar 

  18. D.M. Guldi and N. Martín: Fullerenes: From Synthesis to Optoelectronic Properties (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002); pp. 121–135.

    Book  Google Scholar 

  19. G. Zheng, S. Irle, and K. Morokuma: Performance of the DFTB method in comparison to DFT and semiempirical methods for geometries and energies of C20–C86 fullerene isomers. Chem. Phys. Lett. 412, 210 (2005).

    Article  CAS  Google Scholar 

  20. B. Paulus: Electronic and structural properties of the cage-like molecules C20 to C36. Phys. Chem. Chem. Phys. 5, 3364 (2003).

    Article  CAS  Google Scholar 

  21. M. Bendikovand, F. Wudl, and D.F. Perepichka: Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: The brick and mortar of organic electronics. Chem. Rev. 104, 4891 (2004).

    Article  CAS  Google Scholar 

  22. A. Rassat: Chirality and symmetry aspects of spheroarenes, including fullerenes. Chirality 13, 395 (2001).

    Article  CAS  Google Scholar 

  23. A. Lappas, K. Prassides, K. Vavekis, D. Arcon, R. Blinc, P. Cevc, A. Amato, R. Feyerherm, F.N. Gygax, and A. Schenck: Spontaneous magnetic ordering in the fullerene charge-transfer salt (TDAE) C60. Science, 267 (5205), 1799 (1995).

    Article  CAS  Google Scholar 

  24. A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra, A.P. Ramirez, and A.R. Kortan: Superconductivity at 18 K in potassium-doped C60. Nature 350, 600 (1991).

    Article  CAS  Google Scholar 

  25. L. Echegoyenand and L.E. Echegoyen: Electrochemistry of fullerenes and their derivatives. Acc. Chem. Res. 31, 593 (1998).

    Article  Google Scholar 

  26. D.M. Guldi: Fullerenes: Three dimensional electron acceptor materials. Chem. Commun. 5, 321 (2000).

    Article  Google Scholar 

  27. H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, L.T. Scott, M. Gelmont, D. Olevano, and B.V. Issendorff: Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature 407, 60 (2000).

    Article  CAS  Google Scholar 

  28. K.D. Sattler: Handbook of Nanophysics: Clusters and Fullerenes (CRC Press, Boca Raton, 2009); pp. 28–36.

    Google Scholar 

  29. C. Roland, B. Larade, J. Taylor, and H. Guo: Ab initio IV characteristics of short C20 chains. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 041401(R) (2001).

    Article  CAS  Google Scholar 

  30. T. Yamamoto, K. Watanabe, and S. Watanabe: Electronic transport in fullerene C20 bridge assisted by molecular vibrations. Phys. Rev. Lett. 95, 065501 (2005).

    Article  CAS  Google Scholar 

  31. Y.P. An, C.L. Yang, M.S. Wang, X.G. Ma, and D.H. Wang: First-principles study of structure and quantum transport properties of C20 fullerene. J. Chem. Phys. 131, 024311 (2009).

    Article  CAS  Google Scholar 

  32. Y.P. An, C.L. Yang, M.S. Wang, X.G. Ma, and D.H. Wang: First-principles study of transport properties of endohedral Li@C20 metallofullerene. Curr. Appl. Phys. 10, 260 (2010).

    Article  Google Scholar 

  33. L.H. Wang, Y. Guo, C.F. Tian, X.P. Song, and B.J. Ding: Effect of the indices of crystal plane of gold electrodes on the transport properties of C20 fullerene. J. Appl. Phys. 107, 103702 (2010).

    Article  CAS  Google Scholar 

  34. G. Ji, D. Li, C. Fang, Y. Xu, Y. Zhai, B. Cui, and D. Liu: Effect of contact interface configuration on electronic transport in (C20)2-based molecular junctions. Phys. Lett. A 376, 773, (2012).

    Article  CAS  Google Scholar 

  35. V.K. Ivanov, G. Yu Kashenock, R.G. Polozkov, and A.V. Solov’yov: Photoionization cross sections of the fullerenes C20 and C60 calculated in a simple spherical model. J. Phys. B: At., Mol. Opt. Phys. 34, L669 (2001).

    Article  CAS  Google Scholar 

  36. D. Xiang, H. Jeong, D. Kim, T. Lee, Y. Cheng, Q. Wang, and D. Mayer: Three-terminal single-molecule junctions formed by mechanically controllable break junctions with side gating. Nano Lett. 13, 2809 (2013).

    Article  CAS  Google Scholar 

  37. M. Kaur, R.S. Sawhney, and D. Engles: To evince pure C24 as superconductoring mechanically controllable break junction configuration. In 2013 International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET) (IEEE: Chennai, 2013); pp. 426–430.

    Google Scholar 

  38. A. Goel, J.B. Howard, and J.B. Vander Sande: Size analysis of single fullerene molecules by electron microscopy. Carbon 42, 1907 (2004).

    Article  CAS  Google Scholar 

  39. T.E. Karakasidis and C.A. Charitidis: Multiscale modeling in nanomaterials science. Mater. Sci. Eng., C 27 (5), 1082 (2007).

    Article  CAS  Google Scholar 

  40. A. Ferreira and S.S. Aphale: A survey of modeling and control techniques for micro- and nanoelectromechanical systems. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 41 (3), 350 (2011).

    Article  Google Scholar 

  41. M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro: Density-functional method for nonequilibrium electron transport. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 165401 (2002).

    Article  CAS  Google Scholar 

  42. K. Stokbro: First-principles modeling of electron transport. J. Phys.: Condens. Matter 20, 064216 (2008).

    CAS  Google Scholar 

  43. M.Y. Xue, S. Datta, and M.A. Ratner: First-principles based matrix-Green’s function approach to molecular electronic devices: General formalism. Chem. Phys. 281, 151 (2002).

    Article  CAS  Google Scholar 

  44. Atomistix Tool Kit Manual version 12.2.0 (Copyright QuantumWise 2008–2015).

  45. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  46. Y. Cho, W.Y. Kim, and K.S. Kim: Effect of electrodes on electronic transport of molecular electronic devices. J. Phys. Chem. A 113, 4100 (2009).

    Article  CAS  Google Scholar 

  47. Y. Kim, J.T. Kheli, P.A. Schultz, and W.A. Goddard: First-principles approach to the charge-transport characteristics of monolayer molecular-electronics devices: Application to hexanedithiolate devices. Phys. Rev. B: Condens. Matter Mater. Phys. 73, 235419 (2006).

    Article  CAS  Google Scholar 

  48. M. Strange, S. Kristensen, K.S. Thygesen, and K.W. Jacobsen: Benchmark density functional theory calculations for nanoscale conductance. J. Chem. Phys. 128, 114714 (2008).

    Article  CAS  Google Scholar 

  49. N. Troullier and J.L. Martins: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 43, 1993 (1991).

    Article  CAS  Google Scholar 

  50. ATK-tutorials: Why are so many k-points needed in the transport direction in a device calculation? (2014).

  51. A detailed discussion is given in the supporting information.

  52. J. Luo, Z.Q. Xue, W.M. Liu, J.L. Wu, and Z.Q. Yang: Koopmans’ theorem for large molecular systems within density functional theory. J. Phys. Chem. A 110, 12005 (2006).

    Article  CAS  Google Scholar 

  53. F.A. Gianturco, G.Y. Kashenock, R.R. Lucchese, and N. Sanna: Low-energy resonant structures in electron scattering from C20 fullerene. J. Chem. Phys. 116, 2811 (2002).

    Article  CAS  Google Scholar 

  54. R. Cohen, K. Stokbro, J.M.L. Martin, and M.A. Ratner: Charge transport in conjugated aromatic molecular junctions: Molecular conjugation and molecule–electrode coupling. J. Phys. Chem. C 111, 14893 (2007).

    Article  CAS  Google Scholar 

  55. H. Morkoc: Advanced Semiconductors and Organic Nano-techniques (Academic Press, New York, 2003).

    Google Scholar 

  56. H. Song, M.A. Reed, and T. Lee: Single molecule electronic devices. Adv. Mater. 23, 1583 (2011).

    Article  CAS  Google Scholar 

  57. C. Durkan: Current at the Nanoscale (Imperial College Press, London, 2007); pp. 10–12.

    Google Scholar 

  58. B.N. Taylor and P.J. Mohr: Codata Value: Conductance quantum (2010). Available at: http://physics.nist.gov/cgi-bin/cuu/Value?conqu2e2sh. Retrieved 2016-02-08.

  59. B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, and C.T. Foxon: Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848 (1988).

    Article  Google Scholar 

  60. W. Liang, M.P. Shores, M. Bockrath, J.R. Long, and H. Park: Kondo resonance in a single-molecule transistor. Nature 417, 725 (2002).

    Article  CAS  Google Scholar 

  61. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abrunã, P.L. McEuen, and D.C. Ralph: Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Milanpreet Kaur, Ravinder Singh Sawhney or Derick Engles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Sawhney, R.S. & Engles, D. Non-equilibrium tunneling through Au–C20–Au molecular bridge using density functional theory–non-equilibrium Green function approach. Journal of Materials Research 31, 2025–2034 (2016). https://doi.org/10.1557/jmr.2016.170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.170

Navigation