Skip to main content
Log in

The relevance of forced melt flow to grain refinement in pure aluminum under a low-frequency alternating current pulse

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The refinement mechanism of alternating current pulse (ACP) on the solidification macrostructures of pure Al and the characterization of refining efficiency were investigated by embedding the wire mesh in the mold. The experiment results showed that ACP treatment during solidification led to the formation of fine equiaxed grain. There were remarkably differences with respect to the area of fine equiaxed zone inside and outside the tube. Lorentz force, induced melt flow and the rest of intrinsic effects of ACP inside and outside the tube were discussed in the present study. It demonstrated that the forced melt flow could lead to the columnar fragmentation and make the crystal nucleus on the mold wall fall off and drift in the liquid, leading to grain refinement. In addition, Reynolds number was suitable to characterize the refining efficiency of pure Al under ACP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M. Nakada, Y. Shiohara, and M.C. Flemings: Modification of solidification structures by pulse electric discharging. ISIJ Int. 30, 27 (1990).

    Article  CAS  Google Scholar 

  2. J.P. Barnak, A.F. Sprecher, and H. Conrad: Colony (grain) size reduction in eutectic Pb–Sn castings by electropulsing. Scr. Metall. Mater. 32, 879 (1995).

    Article  CAS  Google Scholar 

  3. J.H. Ma, J. Li, Y.L. Gao, and Q.J. Zhai: Grain refinement of pure Al with different electric current pulse modes. Mater. Lett. 63, 142 (2009).

    Article  CAS  Google Scholar 

  4. X.B. Li, F.G. Lu, H.C. Cui, and X.H. Tang: Effect of electric current pulse on flow behaviour of Al melt in parallel electrode process. Mater. Sci. Technol. 29, 226 (2013).

    Article  CAS  Google Scholar 

  5. Y.B. Jiang, G.Y. Tang, L. Guan, S.N. Wang, Z.H. Xu, C. Shek, and Y.H. Zhu: Effect of electropulsing treatment on solid solution behavior of an aged Mg alloy AZ61 strip. J. Mater. Res. 23, 2685 (2008).

    Article  CAS  Google Scholar 

  6. X.L. Wang, W.B. Dai, R. Wang, X.Z. Tian, and X. Zhao: Enhanced phase transformation and variant selection by electric current pulses in a Cu–Zn alloy. J. Mater. Res. 29, 975 (2014).

    Article  CAS  Google Scholar 

  7. A. Rahnama and R.S. Qin: Electropulse-induced microstructural evolution in a ferritic–pearlitic 0.14% C steel. Scr. Mater. 96, 17 (2015).

    Article  CAS  Google Scholar 

  8. Y.Z. Zhou, R.S. Qin, and S.H. Xiao: Reversing effect of electropulsing on damage of 1045 steel. J. Mater. Res. 15, 1056 (2000).

    Article  CAS  Google Scholar 

  9. W.R. Osório, E.S. Freitas, and A. Garcia: EIS and potentiodynamic polarization studies on immiscible monotectic Al–In alloys. Electrochim. Acta 102, 436 (2013).

    Article  Google Scholar 

  10. L.R. Garcia, W.R. Osório, and A. Garcia: The effect of cooling rate on the dendritic spacing and morphology of Ag3Sn intermetallic particles of a SnAg solder alloy. Mater. Des. 32, 3008 (2011).

    Article  CAS  Google Scholar 

  11. W.R. Osorio, C.M.A. Freire, and A. Garcia: The role of macrostructural morphology and grain size on the corrosion resistance of Zn and Al castings. Mater. Sci. Eng., A 402, 22 (2005).

    Article  Google Scholar 

  12. X.F. Zhang, W.J. Lu, and R.S. Qin: Removal of MnS inclusions in molten steel using electropulsing. Scr. Mater. 69, 453 (2013).

    Article  CAS  Google Scholar 

  13. J.G. Qi, J.Z. Wang, and L.J. He: An investigation for structure transformation in electric pulse modified liquid aluminum. Phys. B 406, 846 (2011).

    Article  CAS  Google Scholar 

  14. J.Z. Wang, J.Q. Qi, Z.F. Zhao, H.S. Guo, and T. Zhao: Effects of electric pulse modification on liquid structure of Al–5%Cu alloy. Trans. Nonferrous Met. Soc. China 23, 2792 (2013).

    Article  CAS  Google Scholar 

  15. J. Li, J.H. Ma, Y.L. Gao, and Q.J. Zhai: Research on solidification structure refinement of pure aluminum by electric current pulse with parallel electrodes. Mater. Sci. Eng., A 490, 452 (2008).

    Article  Google Scholar 

  16. C.Y. Ban, Y. Han, Q.X. Ba, and J.Z. Cui: Influence of pulse electric current on solidification structures of Al–Si alloys. Mater. Sci. Forum 546–549, 723 (2007).

    Article  Google Scholar 

  17. X.L. Liao, Q.J. Zhai, C.J. Song, W.J. Chen, and Y.Y. Gong: Effects of electric current pulse on stability of solid/liquid interface of Al–4.5 wt.% Cu alloy during directional solidification. Mater. Sci. Eng., A 466, 56 (2007).

    Article  Google Scholar 

  18. J. Zhu, T. Wang, F. Cao, W.X. Huang, H. Fu, and Z. Chen: Real time observation of equiaxed growth of Sn–Pb alloy under an applied direct current by synchrotron microradiography. Mater. Lett. 89, 137 (2012).

    Article  CAS  Google Scholar 

  19. X.L. Liao, Q.J. Zhai, J. Luo, W.J. Chen, and Y.Y. Gong: Refining mechanism of the electric current pulse on the solidification structure of pure aluminum. Acta Mater. 55, 3103 (2007).

    Article  CAS  Google Scholar 

  20. L.M. Zhang, R. Zhang, W. Chen, Y. Wu, and N. Li: Effect of a novel low-voltage alternating current pulse on solidification structure of Al-7Si-0.52Mg alloy. Adv. Mater. Res. 482, 1431 (2012).

    Article  Google Scholar 

  21. M.C. Gui, J. Jia, Q.C. Li, and J.H. Feng: Design and application of the instrument of electrical resistivity measurement for liquid metal. J. Mater. Eng. 7, 29 (1994). (In Chinese).

    Google Scholar 

  22. D. Räbiger, Y. Zhang, V. Galindo, S. Franke, B. Willers, and S. Eckert: The relevance of melt convection to grain refinement in Al–Si alloys solidified under the impact of electric currents. Acta Mater. 79, 327 (2014).

    Article  Google Scholar 

  23. M.J. Li, T. Tamura, N. Omura, and K. Miwa: Effects of magnetic field and electric current on the solidification of AZ91D magnesium alloys using an electromagnetic vibration technique. J. Alloys Compd. 487, 187 (2009).

    Article  CAS  Google Scholar 

  24. L.M. Zhang, N. Li, H. Xing, R. Zhang, K. Song, L. Du, P. Yin, and C. Yang: Microstructure evolution of directionally solidified Sn–Bi alloy under different medium-density direct current. J. Cryst. Growth 430, 80 (2015).

    Article  CAS  Google Scholar 

  25. I. Kaldre, Y. Fautrelle, J. Etay, A. Bojarevics, and L. Buligins: Influence on the macrosegregation of binary metallic alloys by thermoelectromagnetic convection and electromagnetic stirring combination. J. Cryst. Growth 402, 230 (2014).

    Article  CAS  Google Scholar 

  26. E. Liotti, A. Lui, R. Vincent, S. Kumar, Z. Guo, T. Connolley, I.P. Dolbnya, M. Hart, L. Arnberg, R.H. Mathiesen, and P.S. Grant: A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al–15Cu alloy. Acta Mater. 70, 228 (2014).

    Article  CAS  Google Scholar 

  27. V. Sklyarchuk, Y. Plevachuk, A. Yakymovych, S. Eckert, G. Gerbeth, and K. Eigenfeld: Structure sensitive properties of liquid Al–Si alloys. Int. J. Thermophys. 30, 1400 (2009).

    Article  CAS  Google Scholar 

  28. M.H. Sun, H.R. Geng, X.F. Bian, and Y. Liu: Abnormal changes in aluminum viscosity and its relationship with the microstructure of melts. Acta Metall. Sin. 36, 1135 (2000). (In Chinese).

    Google Scholar 

  29. X. Li, Y. Fautrelle, and Z.M. Ren: Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al–Cu alloys under a magnetic field. Acta Mater. 55, 3803 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the NPU Foundation for Fundamental Research in China (No. JC201272), the Fundamental Research Funds for the Central Universities on Northwestern Polytechnical University (GEKY1008 and No. 3102014KYJD026) and the National Natural Science Foundation of Shaanxi Province in China (No. 2015JQ5125).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Limin Zhang or Rong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, H., Li, N. et al. The relevance of forced melt flow to grain refinement in pure aluminum under a low-frequency alternating current pulse. Journal of Materials Research 31, 396–404 (2016). https://doi.org/10.1557/jmr.2016.17

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.17

Navigation