Abstract
The mechanical behavior of superconductor lamellar-like BaFe2As2 single crystals was investigated at nanoscale by instrumented indentation. The unique responses of the ab — and a (b) c-crystallographic planes were discussed based on their influence in hardness (H) and elastic modulus (E). The results allowed two main conclusions. (i) The choice of testing parameters strongly affected the scaling of mechanical properties on the lamellar surfaces. Lamellar cracking was the leading mechanism of deformation, featuring a brittle-like behavior and affecting considerably H and E. However, the plastic deformation history allowed different elastic–plastic responses on the ab -plane owing to the compaction of the material. Threshold loads for cracking depended on both loading rate and penetration velocity, pointing out to time-dependent plastic deformation mechanisms. (ii) Proper estimates were achieved for H in multiple loading tests [3.4 GPa for ab — and ∼1 GPa for a (b) c -planes], and for E under loads less than 3 mN (∼55 GPa for both planes).
Similar content being viewed by others
References
F. Bouville, E. Maire, S. Meille, B. Van De Moortèle, A.J. Stevenson, and S. Deville: Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat. Mater. 13 (5), 508 (2014).
M.W. Barsoum, A. Murugaiah, S.R. Kalidindi, T. Zhen, and Y. Gogotsi: Kink bands, nonlinear elasticity and nanoindentations in graphite. Carbon 42 (8–9), 1435 (2004).
M.J. Buehler: Nano- and micromechanical properties of hierarchical biological materials and tissues. J. Mater. Sci. 42 (21), 8765 (2007).
F.C. Serbena, C.E. Foerster, A.R. Jurelo, A. Mikowski, P.R. Júnior, C.R. Carubelli, and C.M. Lepienski: Depth-Sensing indentation on REBa2Cu3O7−δ single crystals obtained from xenotime mineral. Braz. J. Phys. 42 (5–6), 330 (2012).
F.T. Dias, L.B.L.G. Pinheiro, G.B. de Souza, F.C. Serbena, S.A. da Silva, A.R. Jurelo, S.L. Bud’ko, A. Thaler, and P.C. Canfield: Nanoscratch and indentation fracture toughness in superconductor Ba–Fe–As single crystals with lamellar structure. Tribol. Int. 79, 84 (2014).
A.R. Studart, R. Libanori, and R.M. Erb: Replicating biological design principles in synthetic composites. In Materials Design Inspired by Nature: Function Through Inner Architecture, P. Fratzl, J.W.C. Dunlop and R. Weinkamer eds.; RSC Publishing: Cambridge, U.K., 2013; pp. 322–358.
A. Mikowski, P. Soares, F. Wypych, and C.M. Lepienski: Fracture toughness, hardness, and elastic modulus of kyanite investigated by a depth-sensing indentation technique. Am. Mineral. 93 (5–6), 844 (2008).
C.M. Lepienski, M.S. Meruvia, W. Veiga, and F. Wypych: Mechanical properties of niobium disulfide and its hydrated sodium cation intercalation compound. J. Mater. Res. 15 (10), 2061 (2000).
D.H. Mosca, N. Mattoso, C.M. Lepienski, W. Veiga, I. Mazzaro, V.H. Etgens, and M. Eddrief: Mechanical properties of layered InSe and GaSe single crystals. J. Appl. Phys. 91 (1), 140 (2002).
W. Veiga and C.M. Lepienski: Nanomechanical properties of lead iodide (PbI2) layered crystals. Mater. Sci. Eng., A 335, 6 (2002).
A. Mikowski, P. Soares, F. Wypych, J.E.F.C. Gardolinski, and C. Lepienski: Mechanical properties of kaolinite ‘macro-crystals’. Philos. Mag. 87 (29), 4445 (2007).
M.A. Meyers, P-Y. Chen, M.I. Lopez, Y. Seki, and A.Y.M. Lin: Biological materials: A materials science approach. J. Mech. Behav. Biomed. Mater. 4 (5), 626 (2011).
A. Mikowski, F.C. Serbena, C.E. Foerster, A.R. Jurelo, and C.M. Lepienski: A method to measure fracture toughness using indentation in REBa2Cu3O7−δ superconductor single crystals. J. Appl. Phys. 110 (10), 103504 (2011).
W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7 (6), 1564 (1992).
A.C. Fischer-Cripps: Introduction to Contact Mechanics, 2nd ed. (Springer-Verlag, New York, USA, 2000); p. 157.
Y. Tian, B. Xu, and Z. Zhao: Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 33, 93 (2012).
Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono: Iron-based layered superconductor: LaOFeP. J. Am. Chem. Soc. 128 (31), 10012 (2006).
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono: Iron-based layered superconductor La[O1− xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 130 (11), 3296 (2008).
M. Rotter, M. Tegel, and D. Johrendt: Superconductivity at 38 K in the iron arsenide (Ba1− xKx)Fe2As2. Phys. Rev. Lett. 101 (10), 107006 (2008).
F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P.M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, and M.-K. Wu: Superconductivity in the PbO-type structure alpha-FeSe. Proc. Natl. Acad. Sci. U. S. A. 105, 14262 (2008).
X.C. Wang, Q.Q. Liu, Y.X. Lv, W.B. Gao, L.X. Yang, R.C. Yu, F.Y. Li, and C.Q. Jin: The superconductivity at 18 K in LiFeAs system. Solid State Commun. 148 (11–12), 538 (2008).
N. Ni, S. Nandi, A. Kreyssig, A.I. Goldman, E.D. Mun, S.L. Bud’ko, and P.C. Canfield: First order structural phase transition in CaFe2As2. Phys. Rev. B: Condens. Matter Mater. Phys. 78, 14523 (2008).
M. Rotter, M. Tegel, D. Johrendt, I. Schellenberg, W. Hermes, and R. Pöttgen: Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe2As2. Phys. Rev. B: Condens. Matter Mater. Phys. 78 (2), 20503 (2008).
J.L. Pimentel, A.R. Jurelo, C.E. Foerster, P. Rodrigues, and R.M. Costa: Mechanical properties of FeSex superconductor. Phys. C 470 (S411–S412), 2009 (2010).
J.L. Pimentel, F.C. Serbena, and A.R. Jurelo: Characterization of FeSex superconductor prepared by different thermal routes by instrumented indentation. J. Supercond. Novel Magn. 24 (5), 1437 (2010).
J.L. Pimentel, P. Pureur, C.S. Lopes, F.C. Serbena, C.E. Foerster, S.A. da Silva, A.R. Jurelo, and A.L. Chinelatto: Mechanical properties of highly oriented FeSe0.5Te0.5 superconductor. J. Appl. Phys. 111 (3), 033908 (2012).
A.R. Jurelo, F.C. Serbena, G.B. de Souza, C.E. Foerster, N.B. Sabino, S.A. da Silva, C.S. Lopes, and J.L. Pimentel: Nanoscratch in highly oriented FeSe0.5Te0.5 superconductor. Wear 303 (1–2), 78 (2013).
A. Thaler, H. Hodovanets, M.S. Torikachvili, S. Ran, A. Kracher, W. Straszheim, J.Q. Yan, E. Mun, and P.C. Canfield: Physical and magnetic properties of Ba(Fe(1− x)Mnx)2As2 single crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 1444528 (2011).
C.E. Foerster, F.C. Serbena, A.R. Jurelo, T.R. Ferreira, P. Rodrigues, and A.L. Chinelatto: Mechanical properties of REBa2Cu3O7− d superconductor with RE obtained from xenotime mineral. IEEE Trans. Appl. Supercond. 21 (2), 52 (2011).
L.B.L.G. Pinheiro, A.R. Jurelo, F.C. Serbena, P. Rodrigues, C.E. Foerster, and A.L. Chinelatto: Mechanical characterization of melt-textured Y0.95Er0.05Ba2Cu3O7−δ superconductor prepared in air. Phys. C 470 (11–12), 465 (2010).
C.E. Foerster, E. Lima, F.C. Serbena, C.M. Lepienski, A.R. Jurelo, and X. Obradors: Mechanical properties of Ag-doped top-seeded melt-grown YBCO Pellets. Braz. J. Phys. 38 (3), 341 (2008).
W.D. Nix and H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46 (3), 411 (1998).
S.A.J. Kimber, A. Kreyssig, Y-Z. Zhang, H.O. Jeschke, R. Valentí, F. Yokaichiya, E. Colombier, J. Yan, T.C. Hansen, T. Chatterji, R.J. McQueeney, P.C. Canfield, A.I. Goldman, and D.N. Argyriou: Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2. Nat. Mater. 8 (6), 471 (2009).
T. Niu and G. Cao: Finite size effect does not depend on the loading history in soft matter indentation. J. Phys. D: Appl. Phys. 47 (38), 385303 (2014).
ACKNOWLEDGMENTS
The authors thank Prof. Dr. C.M. Lepienski (DEFIS/UFPR) for the use of the instrumented indentation facilities, Prof. Dr. A.L. Chinelatto (DEMA/UEPG) for some of the SEM images, the CME/UFPR for the use of SEM facilities, and C-LABMU/UEPG for the use of AFM. This work was partially financed by CNPq/Brazil under contract no. 472.746/2013-8. Work at the Ames Laboratory was supported by the US Department of Energy Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
de Souza, G.B., Serbena, F.C., Jurelo, A.R. et al. On the determination of hardness and elastic modulus in BaFe2As2 lamellar-like material. Journal of Materials Research 31, 1413–1422 (2016). https://doi.org/10.1557/jmr.2016.166
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2016.166