Skip to main content
Log in

Silaffin primary structure and its effects on the precipitation morphology of titanium dioxide

  • Biomineralization and Biomimetics Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Inorganic oxides exhibit numerous applications influenced by particle size and morphology. While industrial methods for forming oxides involve harsh conditions, nature has the ability to form intricate structures of silicon dioxide (silica) using small peptides and polyamines under environmentally friendly conditions. Recent research has demonstrated that these biomaterials will precipitate other inorganic oxides, such as titanium dioxide (titania). Using the diatom-derived R5 peptide, new peptides with systematic changes (e.g., truncation and substitution) in the R5 primary structure were surveyed for reactivities and the impact on the morphology of the titania. The results demonstrated that (i) basic residues are vital to initiating the reaction, and a minimum local concentration is necessary to sustain the precipitation, (ii) residues containing hydroxyl side chains are important to imparting morphological control on the precipitate, and (iii) buffer conditions can dramatically alter both precipitation and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. M. Shao, X. Xu, J. Huang, Q. Zhang, and L. Ma: TiO2 nanotube-based composites: Synthesis and applications. Sci. Adv. Mater. 5, 962–981 (2013).

    Article  CAS  Google Scholar 

  2. M. Tanveer and G.T. Guyer: Solar assisted photo degradation of wastewater by compound parabolic collectors: Review of design and operational parameters. Renewable Sustainable Energy Rev. 24, 534–543 (2013).

    Article  CAS  Google Scholar 

  3. D. Kowalski, D. Kim, and P. Schmuki: TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. Nano Today 8, 235–264 (2013).

    Article  CAS  Google Scholar 

  4. K. Shiba, M. Tagaya, R.D. Tilley, and N. Hanagata: Oxide-based inorganic/organic and nanoporous spherical particles: Synthesis and functional properties. Sci. Technol. Adv. Mater. 14, 023002 (2013).

    Article  Google Scholar 

  5. T-D. Nguyen: From formation mechanisms to synthetic methods toward shape-controlled oxide nanoparticles. Nanoscale 5, 9455–9482 (2013).

    Article  CAS  Google Scholar 

  6. K.M. Kummer, E. Taylor, and T.J. Webster: Biological applications of anodized TiO2 nanostructures: A review from orthopedic to stent applications. Nanosci. Nanotechnol. Lett. 4, 483–493 (2012).

    Article  CAS  Google Scholar 

  7. T. Gershon: Metal oxide applications in organic-based photovoltaics. Mater. Sci. Technol. 27, 1357–1371 (2011).

    Article  CAS  Google Scholar 

  8. H-H. Li, R-F. Chen, C. Ma, S-L. Zhang, Z-F. An, and W. Huang: Titanium oxide nanotubes prepared by anodic oxidation and their application in solar cells. Acta Phys.-Chim. Sin. 27, 1017–1025 (2011).

    Article  Google Scholar 

  9. S. Sundarrajan, A.R. Chandrasekaran, and S. Ramakrishna: An update on nanomaterials-based textiles for protection and decontamination. J. Am. Ceram. Soc. 93, 3955–3975 (2010).

    Article  CAS  Google Scholar 

  10. M. Adachi, J. Jinting, and S. Isoda: Synthesis of morphology-controlled titania nanocrystals and applications for dye-sensitized solar cells. Curr. Nanosci. 3, 285–295 (2007).

    Article  CAS  Google Scholar 

  11. Y. Wu, J. Yu, H-M. Liu, and B-Q. Xu: One-dimensional TiO2 nanomaterials: Preparation and catalytic applications. J. Nanosci. Nanotechnol. 10, 6707–6719 (2010).

    Article  CAS  Google Scholar 

  12. Y. Chen, Y. Yi, J.D. Brennan, and M.A. Brook: Development of macroporous titania monoliths using a biocompatible method. Part 1: Material fabrication and characterization. Chem. Mater. 18, 5326–5335 (2006).

    Article  CAS  Google Scholar 

  13. N. Kroger, R. Deutzmann, C. Bergsdorf, and M. Sumper: Species-specific polyamines from diatoms control silica morphology. Proc. Natl. Acad. Sci. U. S. A. 97, 14133–14138 (2000).

    Article  CAS  Google Scholar 

  14. N. Kroger, R. Deutzmann, and M. Sumper: Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286, 1129–1132 (1999).

    Article  CAS  Google Scholar 

  15. N. Poulsen, M. Sumper, and N. Kroger: Biosilica formation in diatoms: Characterization of native silaffin-2 and its role in silica morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 100, 12075–12080 (2003).

    Article  CAS  Google Scholar 

  16. H. Menzel, S. Horstmann, P. Behrens, P. Barnreuther, I. Krueger, and M. Jahns: Chemical properties of polyamines with relevance to the biomineralization of silica. Chem. Commun. 24, 2994–2995 (2003).

    Article  Google Scholar 

  17. M.B. Dickerson, K.H. Sandhage, and R.R. Naik: Protein- and peptide-directed syntheses of inorganic materials. Chem. Rev. 108, 4935–4978 (2008).

    Article  CAS  Google Scholar 

  18. P.J. Lopez, C. Gautier, J. Livage, and T. Coradin: Mimicking biogenic silica nanostructures formation. Curr. Nanosci. 1, 73–83 (2005).

    Article  CAS  Google Scholar 

  19. M.M. Tomczak, D.D. Glawe, L.F. Drummy, C.G. Lawrence, M.O. Stone, C.C. Perry, D.J. Pochan, T.J. Deming, and R.R. Naik: Polypeptide-templated synthesis of hexagonal silica platelets. J. Am. Chem. Soc. 127, 12577–12582 (2005).

    Article  CAS  Google Scholar 

  20. H.R. Luckarift, M.B. Dickerson, K.H. Sandhage, and J.C. Spain: Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania. Small 2, 640–643 (2006).

    Article  CAS  Google Scholar 

  21. K.M. Roth, Y. Zhou, W. Yang, and D.E. Morse: Bifunctional small molecules are biomimetic catalysts for silica synthesis at neutral pH. J. Am. Chem. Soc. 127, 325–330 (2005).

    Article  CAS  Google Scholar 

  22. G-L. Lin, Y-H. Tsai, H-P. Lin, C-Y. Tang, and C-Y. Lin: Synthesis of mesoporous silica helical fibers using a cationic-neutral ternary surfactant in a highly dilute silica solution: Biomimetic silification. Langmuir 23, 4115–4119 (2007).

    Article  CAS  Google Scholar 

  23. A. Bernecker, R. Wieneke, R. Riedel, M. Seibt, A. Geyer, and C. Steinem: Tailored synthetic polyamines for controlled biomimetic silica formation. J. Am. Chem. Soc. 132, 1023–1031 (2010).

    Article  CAS  Google Scholar 

  24. N. Kroger, M.B. Dickerson, G. Ahmad, Y. Cai, M.S. Haluska, K.H. Sandhage, N. Poulsen, and V.C. Sheppard: Bioenabled synthesis of rutile (TiO2) at ambient temperature and neutral pH. Angew. Chem., Int. Ed. 45, 7239–7243 (2006).

    Article  CAS  Google Scholar 

  25. C-L. Chen and N.L. Rosi: Peptide-based methods for the preparation of nanostructured inorganic materials. Angew. Chem., Int. Ed. 49, 1924–1942 (2010).

    Article  CAS  Google Scholar 

  26. R.L. Brutchey and D.E. Morse: Silicatein and the translation of its molecular mechanism of biosilification into low temperature nanomaterial synthesis. Chem. Rev. 108, 4915–4934 (2008).

    Article  CAS  Google Scholar 

  27. K.E. Cole and A.M. Valentine: Spermidine and spermine catalyze the formation of nanostructured titanium oxide. Biomacromolecules 8, 1641–1647 (2007).

    Article  CAS  Google Scholar 

  28. Y. Fang, N. Pousen, M.B. Dickerson, Y. Cai, S.E. Jones, R.R. Naik, N. Kroger, and K.H. Sandhage: Identification of peptides capable of inducing the formation of titania but not silica via a subtractive bacteriophage display approach. J. Mater. Chem. 18, 3871–3875 (2008).

    Article  CAS  Google Scholar 

  29. D. Belton, G. Paine, S.V. Patwardhan, and C.C. Perry: Towards an understanding of (bio)silification: The role of amino acids and lysine oligomers in silification. J. Mater. Chem. 14, 2231–2241 (2004).

    Article  CAS  Google Scholar 

  30. M.B. Dickerson, S.E. Jones, Y. Cai, G. Ahmad, R.R. Naik, N. Kroger, and K.H. Sandhage: Identification and design of peptides for the rapid, high-yield formation of nanoparticulate TiO2 from aqueous solutions at room temperature. Chem. Mater. 20, 1578–1584 (2008).

    Article  CAS  Google Scholar 

  31. N. Choi, L. Tan, J-R. Jang, Y.M. Um, P.J. Yoo, and W-S. Choe: The interplay of peptide sequence and local structure in TiO2 biomineralization. J. Inorg. Biochem. 115, 20–27 (2012).

    Article  CAS  Google Scholar 

  32. D. Zhang, D. Yang, H. Zhang, C. Lu, and L. Qi: Synthesis and photocatalytic properties of hollow microparticles of titania and titania/carbon composites templated by sephadex G-100. Chem. Mater. 18, 3477–3485 (2006).

    Article  CAS  Google Scholar 

  33. S. Filocamo, R. Stote, D. Ziegler, and H. Gibson: Entrapment of DFPase in titania coatings from biomimetically derived method. J. Mater. Res. 8, 1042–1051 (2011).

    Article  Google Scholar 

  34. V. Puddu, J.M. Slocik, R.R. Naik, and C.C. Perry: Titania binding peptides as templates in the biomimetic synthesis of stable titania nanosols: Insight into the role of buffers in peptide-mediated mineralization. Langmuir 29, 9464–9472 (2013).

    Article  CAS  Google Scholar 

  35. E. Kharlampieva, J.M. Slocik, S. Singamaneni, N. Poulsen, N. Kroger, R.R. Naik, and V.V. Tsukruk: Protein-enabled synthesis of monodisperse titania nanoparticles on and within polyelectrolyte matrices. Adv. Funct. Mater. 19, 2303–2311 (2009).

    Article  CAS  Google Scholar 

  36. S. Ahn, S. Park, and S-Y. Lee: Oligo(L-lysine)-induced titanium dioxide: Effects of consecutive lysine on precipitation. J. Cryst. Growth 335, 100–105 (2011).

    Article  CAS  Google Scholar 

  37. S.L. Sewell and D.W. Wright: Biomimetic synthesis of titanium dioxide utilizing the R5 peptide derived from Cylindrotheca fusiformis. Chem. Mater. 18, 3108–3113 (2006).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Defense Threat Reduction Agency for supporting this research, and Mr. Dave Ziegler for assistance with XRD measurements. We gratefully acknowledge Dr. Charlene Mello for helpful discussions regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Stote.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stote, R.E., Filocamo, S.F. & Lum, J.S. Silaffin primary structure and its effects on the precipitation morphology of titanium dioxide. Journal of Materials Research 31, 1373–1382 (2016). https://doi.org/10.1557/jmr.2016.165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.165

Navigation