Skip to main content
Log in

Synthesis and capacitance performance of MnO2/RGO double-shelled hollow microsphere

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The Manganese dioxide/reduced graphene oxide (MnO2/RGO) double-shelled hollow microsphere with an improved electrical conductivity and accessible surface area has been synthesized using the monodispersive polystyrene (PS) microsphere as a self-sacrificing template. RGO/PS core–shell microsphere was prepared through π–π stacking interaction between PS microsphere and graphene oxide sheet, and then chemical reduction using hydrazine hydrate. MnO2/RGO/PS core-shell-shell microsphere was prepared through in situ chemical redox process between KMnO4 and benzyl alcohol-anchored RGO/PS. MnO2/RGO double-shelled hollow microsphere was obtained by etching PS microsphere from MnO2/RGO/PS using tetrahydrofuran. It had a pore diameter of 560–580 nm and layer thickness of 210–270 nm. Low charge transfer resistance of 0.3006 Ω and total electrochemical impedance of 2.37 Ω caused a high specific capacitance of 450.1 F g−1 at 0.2 A g−1. The capacitance retention of 81.7% after 1000 cycles indicated good cycling capability at 5 A g−1. MnO2/RGO double-shelled hollow microsphere presented the promising application for supercapacitor electrode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. P. Simon and Y. Gogotsi: Materials for electrochemical capacitors. Nat. Mater. 7 (11), 845 (2008).

    Article  CAS  Google Scholar 

  2. X.F. Lu, W.J. Zhang, C. Wang, T.C. Wen, and Y. Wei: One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications. Prog. Polym. Sci. 36 (5), 671 (2011).

    Article  CAS  Google Scholar 

  3. Y. Xie, C. Xia, H. Du, and W. Wang: Enhanced electrochemical performance of polyaniline/carbon/titanium nitride nanowire array for flexible supercapacitor. J. Power Sources 286, 561 (2015).

    Article  CAS  Google Scholar 

  4. Y. Xie and D. Wang: Supercapacitance performance of polypyrrole/titanium nitride/polyaniline coaxial nanotube hybrid. J. Alloys Compd. 665, 323 (2016).

    Article  CAS  Google Scholar 

  5. Y. Xie, H. Du, and C. Xia: Porous poly(3,4-ethylenedioxythiophene) nanoarray used for flexible supercapacitor. Microporous Mesoporous Mater. 204, 163 (2015).

    Article  CAS  Google Scholar 

  6. A.K. Shukla, A. Banerjee, M.K. Ravikumar, and A. Jalajakshi: Electrochemical capacitors: Technical challenges and prognosis for future markets. Electrochim. Acta 84, 165 (2012).

    Article  Google Scholar 

  7. Y. Xie and Y. Zhan: Electrochemical capacitance of porous reduced graphene oxide/nickel foam. J. Porous Mater. 22 (2), 403 (2015).

    Article  CAS  Google Scholar 

  8. J.P. Zheng: High energy density electrochemical capacitors without consumption of electrolyte. J. Electrochem. Soc. 156 (7), A500 (2009).

    Article  CAS  Google Scholar 

  9. F. Tian and Y. Xie: Preparation and capacitive properties of lithium manganese oxide intercalation compound. J. Nanopart. Res. 17, 481 (2015).

    Article  Google Scholar 

  10. Y. Xie and H. Du: Electrochemical capacitance of a carbon quantum dots-polypyrrole/titania nanotube hybrid. RSC Adv. 5 (109), 89689 (2015).

    Article  CAS  Google Scholar 

  11. J. Yan, Z.J. Fan, T. Wei, W.Z. Qian, M.L. Zhang, and F. Wei: Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48 (13), 3825 (2010).

    Article  CAS  Google Scholar 

  12. Y. Xie and X. Fang: Electrochemical flexible supercapacitor based on manganese dioxide–titanium nitride nanotube hybrid. Electrochim. Acta 120, 273 (2014).

    Article  CAS  Google Scholar 

  13. C. Xia, Y. Xie, H. Du, and W. Wang: Ternary nanocomposite of polyaniline/manganese dioxide/titanium nitride nanowire array for supercapacitor electrode. J. Nanopart. Res. 17, 30 (2015).

    Article  Google Scholar 

  14. W.F. Wei, X.W. Cui, W.X. Chen, and D.G. Ivey: Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors. J. Power Sources 186 (2), 543 (2009).

    Article  CAS  Google Scholar 

  15. S.B. Ma, K.W. Nam, W.S. Yoon, X.Q. Yang, K.Y. Ahn, K.H. Oh, and K.B. Kim: Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications. J. Power Sources 178 (1), 483 (2008).

    Article  CAS  Google Scholar 

  16. I-T. Kim, N. Kouda, N. Yoshimoto, and M. Morita: Preparation and electrochemical analysis of electrodeposited MnO2/C composite for advanced capacitor electrode. J. Power Sources 298, 123 (2015).

    Article  CAS  Google Scholar 

  17. A.V. Kretinin, Y. Cao, J.S. Tu, G.L. Yu, R. Jalil, K.S. Novoselov, S.J. Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C.R. Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe, T. Taniguchi, A.K. Geim, and R.V. Gorbachev: Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 14 (6), 3270 (2014).

    Article  CAS  Google Scholar 

  18. R.Y. Jiang, C.Y. Cui, and H.Y. Ma: Using graphene nanosheets as a conductive additive to enhance the capacitive performance of alpha-MnO2. Electrochim. Acta 104, 198 (2013).

    Article  CAS  Google Scholar 

  19. Y. Zhang, M. Su, L. Ge, S.G. Ge, J.H. Yu, and X.R. Song: Synthesis and characterization of graphene nanosheets attached to spiky MnO2 nanospheres and its application in ultrasensitive immunoassay. Carbon 57, 22 (2013).

    Article  CAS  Google Scholar 

  20. M. Kim, Y. Hwang, and J. Kim: Graphene/MnO2-based composites reduced via different chemical agents for supercapacitors. J. Power Sources 239, 225 (2013).

    Article  CAS  Google Scholar 

  21. P.Y. Chan, Rusi, and S.R. Majid: RGO-wrapped MnO2 composite electrode for supercapacitor application. Solid State Ionics 262, 226 (2014).

    Article  CAS  Google Scholar 

  22. Rusi and S.R. Majid: Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors. Sci. Rep. 5, 16195 (2015).

    Article  CAS  Google Scholar 

  23. J.Y. Luo, L. Cheng, and Y.Y. Xia: LiMn2O4 hollow nanosphere electrode material with excellent cycling reversibility and rate capability. Electrochem. Commun. 9 (6), 1404 (2007).

    Article  CAS  Google Scholar 

  24. Y. Xie: Preparation and photoelectrochemical performance of cadmium sulfide quantum dots modified titania nanotube arrays. Thin Solid Films 598, 115 (2016).

    Article  CAS  Google Scholar 

  25. Y. Xie and F. Song: Preparation and capacitance performance of nitrided lithium titanate nanoarrays. Ceram. Int. 42, 9717 (2016).

    Article  CAS  Google Scholar 

  26. Y. Xie, D. Wang, and J. Ji: Preparation and supercapacitance performance of freestanding polypyrrole/polyaniline coaxial nanoarray. Energy Technol. (2016), doi: https://doi.org/10.1002/ente.201500460.

  27. Y. Xie, Y. Meng, and W. Miao: Visible-light-driven self-cleaning SERS substrate of silver nanoparticles and graphene oxide decorated nitrogen-doped titania nanotube array. Surf. Interface Anal. (2016), doi: https://doi.org/10.1002/sia.5964.

  28. Y. Xie and W. Wang: Bioelectrocatalytic performance of glucose oxidase/nitrogen-doped titania nanotube array enzyme electrode. J. Chem. Technol. Biotechnol. 91, 1403 (2016).

    Article  CAS  Google Scholar 

  29. M. Sawangphruk and J. Limtrakul: Effects of pore diameters on the pseudocapacitive property of three-dimensionally ordered macroporous manganese oxide electrodes. Mater. Lett. 68, 230 (2012).

    Article  CAS  Google Scholar 

  30. Y. Gu, J.W. Cai, M.Z. He, L.P. Kang, Z.B. Lei, and Z.H. Liu: Preparation and capacitance behavior of manganese oxide hollow structures with different morphologies via template-engaged redox etching. J. Power Sources 239, 347 (2013).

    Article  CAS  Google Scholar 

  31. V. Kumar and P.S. Lee: Redox active polyaniline-h-MoO3 hollow nanorods for improved pseudocapacitive performance. J. Phys. Chem. C 119 (17), 9041 (2015).

    Article  CAS  Google Scholar 

  32. L. Li, R. Li, S. Gai, S. Ding, F. He, M. Zhang, and P. Yang: MnO2 nanosheets grown on nitrogen-doped hollow carbon shells as a high-performance electrode for asymmetric supercapacitors. Chem.–Eur. J. 21 (19), 7119 (2015).

    Article  CAS  Google Scholar 

  33. M. Fang, K.G. Wang, H.B. Lu, Y.L. Yang, and S. Nutt: Single-layer graphene nanosheets with controlled grafting of polymer chains. J. Mater. Chem. 20 (10), 1982 (2010).

    Article  CAS  Google Scholar 

  34. S. Wu, W. Chen, and L. Yan: Fabrication of a 3D MnO2/graphene hydrogel for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2 (8), 2765 (2014).

    Article  CAS  Google Scholar 

  35. S. Jin, T. Higashihara, K.S. Jin, J. Yoon, Y. Rho, B. Ahn, J. Kim, A. Hirao, and M. Ree: Synchrotron X-ray scattering characterization of the molecular structures of star polystyrenes with varying numbers of arms. J. Phys. Chem. B 114 (19), 6247 (2010).

    Article  CAS  Google Scholar 

  36. P. Russo, N. Donato, N. Donato, S. Leonardi, S. Baek, D. Conte, G. Neri, and N. Pinna: Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide. Angew. Chem., Int. Ed. 51, 11053 (2012).

    Article  CAS  Google Scholar 

  37. S-W. Lee, S-M. Bak, C-W. Lee, C. Jaye, D.A. Fischer, B-K. Kim, X-Q. Yang, K-W. Nam, and K-B. Kim: Structural changes in reduced graphene oxide upon MnO2 deposition by the redox reaction between carbon and permanganate ions. J. Phys. Chem. C 118 (5), 2834 (2014).

    Article  CAS  Google Scholar 

  38. J.Y. Zhu and J.H. He: Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors. ACS Appl. Mater. Interfaces 4 (3), 1770 (2012).

    Article  CAS  Google Scholar 

  39. M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, and R.S. Ruoff: Graphene-based ultracapacitors. Nano Lett. 8 (10), 3498 (2008).

    Article  CAS  Google Scholar 

  40. X. Tang, Z-h. Liu, C. Zhang, Z. Yang, and Z. Wang: Synthesis and capacitive property of hierarchical hollow manganese oxide nanospheres with large specific surface area. J. Power Sources 193 (2), 939 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The work was supported by National Natural Science Foundation of China (No. 21373047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibing Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Ji, J. Synthesis and capacitance performance of MnO2/RGO double-shelled hollow microsphere. Journal of Materials Research 31, 1423–1432 (2016). https://doi.org/10.1557/jmr.2016.158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.158

Navigation