Skip to main content
Log in

Synthesis and their photocatalytic properties of Ni-doped ZnO hollow microspheres

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ni-doped ZnO hollow microspheres were fabricated by calcining the mixture of zinc and nickel citrate precursors at 500 °C for 2 h. The structure, composition, Barrett–Emmett–Teller specific surface area, and optical properties of Ni-doped ZnO samples were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, wave length dispersive x-ray fluorescence spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, N2 adsorption–desorption isotherms, and ultraviolet (UV)-visible diffuse reflectance spectroscopy. The photocatalytic results demonstrated that the as-synthesized Ni-doped ZnO microcrystals possessed much higher photocatalytic activity than pure ZnO in the decomposition of methylene blue under UV-light irradiation. The present work suggests that Ni-doped ZnO hollow microspheres can be applied as an efficient photocatalyst for water polluted by some chemically stable azo dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
SCHEME 1
FIG. 14

Similar content being viewed by others

References

  1. X. Li, J.G. Yu, J.X. Low, Y.P. Fang, J. Xiao, and X.B. Chen: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485–2534 (2015).

    Article  CAS  Google Scholar 

  2. S. Mukhopadhyay, P.P. Das, S. Maity, P. Ghosh, and P.S. Devi: Solution grown ZnO rods: Synthesis, characterization and defect mediated photocatalytic activity. Appl. Catal. B: Environ. 165, 128–138 (2015).

    Article  CAS  Google Scholar 

  3. M.L. Huang, S.X. Weng, B. Wang, J. Hu, X.Z. Fu, and P. Liu: Various facet tunable ZnO crystals by a scalable solvothermal synthesis and their facet-dependent photocatalytic activities. J. Phys. Chem. C 118, 25434–25440 (2014).

    Article  CAS  Google Scholar 

  4. S. Girish Kumar and K.S.R. Koteswara Rao: Zinc oxide based photocatalysis: Tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5, 3306–3351 (2015).

    Article  CAS  Google Scholar 

  5. X.B. Chen, L. Liu, and F.Q. Huang: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861–1885 (2015).

    Article  CAS  Google Scholar 

  6. L. Liu and X. Chen: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev., 114, 9890–9918 (2014).

    Article  CAS  Google Scholar 

  7. J.Q. Wen, X. Li, W. Liu, Y.P. Fang, J. Xie, and Y.H. Xu: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chinese. J. Catal. 36, 2049–2070 (2015).

    Article  CAS  Google Scholar 

  8. S. Liu, C. Li, J. Yu, and Q. Xiang: Improved visible-light photocatalytic activity of porous carbon self-doped ZnO nanosheet-assembled flowers. CrystEngComm 13, 2533–2541 (2011).

    Article  CAS  Google Scholar 

  9. T. Giannakopoulou, N. Todorova, M. Giannouri, J. Yu, and C. Trapalis: Optical and photocatalytic properties of composite TiO2/ZnO thin films. Catal. Today 230, 174–180 (2014).

    Article  CAS  Google Scholar 

  10. X. Li, T. Xia, C.H. Xu, J. Murowchick, and X.B. Chen: Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. Catal. Today 225, 64–73 (2014).

    Article  CAS  Google Scholar 

  11. T. Zhai, X. Fang, Y. Bando, B. Dierre, B. Liu, H. Zeng, X. Xu, Y. Huang, X. Yuan, T. Sekiguchi, and D. Golberg: Characterization, cathodoluminescence, and field emission properties of morphology-tunable CdS micro/nanostructures. Adv. Funct. Mater. 19, 2423–2430 (2009).

    Article  CAS  Google Scholar 

  12. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan: One dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003).

    Article  CAS  Google Scholar 

  13. S. Assali, I. Zardo, S. Plissard, D. Kriegner, M.A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J.E.M. Haverkort, and E.P.A.M. Bakkers: Direct band gap wurtzite gallium phosphide nanowires. Nano Lett. 13, 1559–1563 (2013).

    Article  CAS  Google Scholar 

  14. C.K. Yong, K. Noori, Q. Gao, H.J. Joyce, H.H. Tan, C. Jagadish, F. Giustino, M.B. Johnston, and L.M. Herz: Strong carrier lifetime enhancement in GaAs nanowires coated with semiconducting polymer. Nano Lett. 12, 6293–6301 (2012).

    Article  CAS  Google Scholar 

  15. N. Han, Z. Yang, F. Wang, S. Yip, G. Dong, X. Liang, T. Hung, Y. Chen, and J.C. Ho: Modulating the morphology and electrical properties of GaAs nanowires via catalyst stabilization by oxygen. ACS Appl. Mater. Interfaces 7, 5591–5597 (2015).

    Article  CAS  Google Scholar 

  16. H.J. Joyce, J. Wong-Leung, C.-K. Yong, C.J. Docherty, S. Paiman, Q. Gao, H.H. Tan, C. Jagadish, J. Lloyd-Hughes, L.M. Herz, and M.B. Johnston: Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy. Nano Lett. 12, 5325–5330 (2012).

    Article  CAS  Google Scholar 

  17. Z.D. Hu, X.F. Duan, M. Gao, Q. Chen, and L.M. Peng: ZnSe nanobelts and nanowires synthesized by a closed space vapor transport technique. J. Phys. Chem. C 111, 2987–2991 (2007).

    Article  CAS  Google Scholar 

  18. R. Georgekutty, M.K. Seery, and S.C. Pillai: A highly efficient Ag–ZnO photocatalyst: Synthesis, properties, and mechanism. J. Phys. Chem. C 112, 13563–13570 (2008).

    Article  CAS  Google Scholar 

  19. X. Zhang, Y. Liu, and Z.H. Kang: 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 6, 4480–4489 (2014).

    Article  CAS  Google Scholar 

  20. A.B. Patil, K.R. Patil, and S.K. Pardeshi: Ecofriendly synthesis and solar photocatalytic activity of S-doped ZnO. J. Hazard Mater. 183, 315–323 (2010).

    Article  CAS  Google Scholar 

  21. L.C. Chen, Y.J. Tu, Y.S. Wang, R.S. Kan, and C.M. Huang: Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. J. Photochem. Photobiol., A 199, 170–178 (2008).

    Article  CAS  Google Scholar 

  22. C. Shifu, Z. Wei, Z. Sujuan, and L. Wei: Preparation, characterization and photocatalytic activity of N-containing ZnO powder. Chem. Eng. J. 148, 263–269 (2009).

    Article  CAS  Google Scholar 

  23. M. Yousefi, M. Amiri, R. Azimirad, and A.Z. Moshfegh: Enhanced photoelectrochemical activity of Ce doped ZnO nanocomposite thin films under visible light. J. Electroanal. Chem. 661, 106–112 (2011).

    Article  CAS  Google Scholar 

  24. S. Anandan, A. Vinu, K.L.P. Sheeja Lovely, N. Gokulakrishnan, P. Srinivasu, T. Mori, et al.: Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. J. Mol. Catal. A: Chem. 266, 149–157 (2007).

    Article  CAS  Google Scholar 

  25. J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. Gu, and Y. Zhang: Structure and photocatalytic activity of Ni-doped ZnO nanorods. Mater. Res. Bull. 46, 1207–1210 (2011).

    Article  CAS  Google Scholar 

  26. Q. Xiao and L. Ouyang: Photocatalytic photodegradation of xanthate over Zn1−xMnxO under visible light irradiation. J. Alloys Compd. 479, 4–7 (2009).

    Article  CAS  Google Scholar 

  27. C. Xu, L. Cao, G. Su, W. Liu, X. Qu, and Y. Yu: Preparation, characterization and photocatalytic activity of Co-doped ZnO powders. J. Alloys Compd. 497, 373–376 (2010).

    Article  CAS  Google Scholar 

  28. Q. Xiao and C. Yao: Preparation and visible light photocatalytic activity of Zn1−xFexO nanocrystalline. Mater. Chem. Phys. 130, 5–9 (2011).

    Article  CAS  Google Scholar 

  29. R. Mohan, K. Krishnamoorthy, and S.-J. Kim: Enhanced photocatalytic activity of Cu doped ZnO nanorods. Solid State Commun. 152, 375–380 (2012).

    Article  CAS  Google Scholar 

  30. X. Cai, Y. Cai, Y. Liu, S. Deng, Y. Wang, and I. Djerdj: Photocatalytic degradation properties of Ni(OH)2 nanosheets/ZnO nanorods composites for azo dyes under visible-light irradiation. Ceram. Int. 40, 57–65 (2014).

    Article  CAS  Google Scholar 

  31. R. Siddheswaran, J. Savková, R. Medlín, J. Očenášek, O. Životský, P. Novak, and P. Šutta: Highly c-axis oriented ZnO: Ni thin film nanostructure by RF magnetron sputtering: Structural, morphological and magnetic studies. Appl. Surf. Sci. 316, 524–531 (2014).

    Article  CAS  Google Scholar 

  32. K. Raja, P.S. Ramesh, and D. Geetha: Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method. Spectrochim. Acta, Part A 120, 19–24 (2014).

    Article  CAS  Google Scholar 

  33. T. Jan, J. Iqbal, M. Ismail, Q. Mansoor, A. Mahmood, and A. Ahmad: Eradication of multi-drug resistant bacteria by Ni doped ZnO nanorods: Structural, Raman and optical characteristics. Appl. Surf. Sci. 308, 75–81 (2014).

    Article  CAS  Google Scholar 

  34. N. Goswami and A. Sahai: Structural transformation in nickel doped zinc oxide nanostructures. Mater. Res. Bull. 48, 346–351 (2013).

    Article  CAS  Google Scholar 

  35. X.F. Chu, X.H. Zhu, Y.P. Dong, T.Y. Chen, M.F. Ye, and W.Q. Sun: An amperometric glucose biosensor based on the immobilization of glucose oxidase on the platinum electrode modified with NiO doped ZnO nanorods. J. Electroanal. Chem. 676, 20–26 (2012).

    Article  CAS  Google Scholar 

  36. J. Zhao, L. Wang, X.Q. Yan, Y. Yang, Y. Lei, J. Zhou, Y.H. Huang, Y.S. Gua, and Y. Zhang: Structure and photocatalytic activity of Ni-doped ZnO nanorods. Mater. Res. Bull. 46, 1207–1210 (2011).

    Article  CAS  Google Scholar 

  37. S. Yilmaz, E. McGlynn, E. Bacaksiz, J. Cullen, and R.K. Chellappan: Structural, optical and magnetic properties of Ni-doped ZnO micro-rods grown by the spray pyrolysis method. Chem. Phys. Lett. 525, 72–76 (2012).

    Article  CAS  Google Scholar 

  38. S. Cho, J.-W. Jang, A. Jung, S.-H. Lee, J. Lee, J. Sung Lee, and K.-H. Lee: Formation of amorphous zinc citrate spheres and their conversion to crystalline ZnO nanostructures. Langmuir 27, 371–378 (2011).

    Article  CAS  Google Scholar 

  39. L. Ge, X.Y. Jing, J. Wang, S. Jamil, Q. Liu, F. Liu, and M. Zhang: Trisodium citrate assisted synthesis of ZnO hollow spheres via a facile precipitation route and their application as gas sensor. J. Mater. Chem. 21, 10750–10754 (2011).

    Article  CAS  Google Scholar 

  40. D.A. Schwartz, K.R. Kittilatved, and D.R. Gamelin: Above-room-temperature ferromagnetic-doped thin films prepared from colloidal diluted magnetic semiconductor quantum dots. Appl. Phys. Lett. 85, 1395–1397 (2004).

    Article  CAS  Google Scholar 

  41. Z.G. Yin, N. Chen, F. Yang, S.L. Song, C.L. Chai, J. Zhong, H.J. Qian, and K. Ibrahim: Structural, magnetic properties and photoemission study of Ni-doped ZnO. Solid State Commun. 135, 430–433 (2005).

    Article  CAS  Google Scholar 

  42. A.I. Boronin, S.V. Koscheev, and G.M. Zhidomirov: XPS and UPS study of oxygen states on silver. J. Electron Spectrosc. Relat. Phenom. 96, 43–51 (1998).

    Article  CAS  Google Scholar 

  43. S. Major, S. Kumar, M. Bhatnagar, and K.L. Chopra: Effect of hydrogen plasma treatment on transparent conducting oxides. Appl. Phys. Lett. 49, 394–401 (1986).

    Article  CAS  Google Scholar 

  44. M.N. Islam, T.B. Ghosh, K.L. Chopra, and H.N. Acharya: XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films 280, 20–25 (1996).

    Article  CAS  Google Scholar 

  45. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, and L.S. Wen: X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 158, 134–140 (2000).

    Article  CAS  Google Scholar 

  46. J.C.C. Fan and J.B. Goodenough: X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. J. Appl. Phys. 48, 3524–3531 (1977).

    Article  CAS  Google Scholar 

  47. Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, and Y. Zhu: Luminescence and photocatalytic activity of ZnO nanocrystals: Correlation between structure and property. Inorg. Chem. 46, 6675–6681 (2007).

    Article  CAS  Google Scholar 

  48. M. Chandrasekhar, H. Nagabhushana, Y.S. Vidya, K.S. Anantharaju, S.C. Sharma, H.B. Premkumar, S.C. Prashantha, P.B. Daruka, C. Shivakumara, R. Saraf, and H.P. Nagaswarupa: Synthesis of Eu3+-activated ZnO superstructures: Photoluminescence, Judd–Ofelt analysis and sunlight photocatalytic properties. J. Mol. Catal. A: Chem. 409, 26–41 (2015).

    Article  CAS  Google Scholar 

  49. P.K. Sharma, A.C. Pandey, G. Zolnierkiewicz, N. Guskos, and C. Rudowicz, Relationship between oxygen defects and the photoluminescence property of ZnO nanoparticles: A spectroscopic view. J. Appl. Phys. 106, 094314–094315 (2009).

    Article  CAS  Google Scholar 

  50. S.Y. Bae, C.W. Na, J.H. Kang, and J. Park: Comparative structure and optical properties of Ga-, in-, and Sn-doped ZnO nanowires synthesized via thermal evaporation. J. Phys. Chem. B 109, 2526–2531 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

We gratefully acknowledge financial support from the National Natural Science Foundation of China (21505118), the Natural Science Foundation of Jiangsu Province (BK2150438), Jiangsu Key Laboratory of Environmental Material and Environmental Engineering China (No.: K13065), Priority Academic Program Development of Jiangsu Higher Education Institutions and Senior visiting scholar program of Jiangsu Higher Vocational College (No.: 2015FX089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyou Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, T., Huang, Q. et al. Synthesis and their photocatalytic properties of Ni-doped ZnO hollow microspheres. Journal of Materials Research 31, 2317–2328 (2016). https://doi.org/10.1557/jmr.2016.137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.137

Navigation