Skip to main content
Log in

Determination of the basic physical properties of semiconductor chalcopyrite type MgSnT2 (T = P, As, Sb) from first-principles calculations

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Using first-principles calculations, the fundamental understanding of the structure, electronic, elastic, lattice dynamic, and optic properties of three Mg-based ternary chalcopyrite semiconductors have been analyzed in detail within density functional theory scheme. To ensure an accurate determination of our calculated results, we considered five popular generalized gradient approximation formulations such as Perdew and Wang, Perdew–Burke and Ernzerhof (PBE), revised PBE, modified PBE, and Armiento–Mattson 2005 as well as local-density approximation (LDA) for the exchange-correlation potentials. It is found that all the calculated values of band gap for these compounds are underestimated compared to existing studies, while LDA-based functional gives better results than others. The electronic band structure demonstrated that these compounds have direct band gap at the Γ point in the Brillouin zone. It is observed that these compounds are mechanically stable in the chalcopyrite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. J.L. Shay and J.H. Wernick: Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Application (Pergamon Press, New York, 1975).

    Google Scholar 

  2. J.E. Jaffe and A. Zunger: Anion displacements and the band-gap anomaly in ternary ABC2 chalcopyrite semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 27, 5176 (1983).

    Article  CAS  Google Scholar 

  3. A. Zunger and J.E. Jaffe: Structural origin of optical bowing in semiconductor alloys. Phys. Rev. Lett. 51, 662 (1983).

    Article  CAS  Google Scholar 

  4. J.E. Jaffe and A. Zunger: Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 29, 1882 (1984).

    Article  CAS  Google Scholar 

  5. J.E. Jaffe and A. Zunger: Electronic structure of the ternary pnictide semiconductors ZnSiP2, ZnGeP2, ZnSnP2, ZnSiAs2, and MgSiP2. Phys. Rev. B: Condens. Matter Mater. Phys. 30, 741 (1984).

    Article  CAS  Google Scholar 

  6. A. Continenza, S. Massidda, A.J. Freemann, T.M. de Pascale, F. Meloni, and M. Serra: Structural and electronic properties of narrow-gap ABC2 chalcopyrite semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 46, 10 070–10 077 (1992).

    Article  CAS  Google Scholar 

  7. T.R. Paudel and W.R.L. Lambrecht: First-principles study of phonons and related ground-state properties and spectra in Zn–IV–N2 compounds. Phys. Rev. B: Condens. Matter Mater. Phys. 78, 115204 (2008).

    Article  CAS  Google Scholar 

  8. S. Sharma, A.S. Verma, and V.K. Jindal: Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX2: X = S, Se, Te). Mater. Res. Bull. 53, 218–233 (2014).

    Article  CAS  Google Scholar 

  9. H.S. Sainia, M. Singh, A.H. Reshak, and M.K. Kashyap: Effect of cation substitution on electronic band structure of ZnGeAs2 pnictides: A mBJLDA approach. J. Alloys Compd. 518, 74–79 (2012).

    Article  CAS  Google Scholar 

  10. S. Sahin, Y.O. Ciftci, K. Colakoglu, and N. Korozlu: First principles studies of elastic, electronic and optical properties of chalcopyrite semiconductor ZnSnP2. J. Alloys Compd. 529, 1–7 (2012).

    Article  CAS  Google Scholar 

  11. V.L. Shaposhnikov, A.V. Krivosheeva, F.A. D’Avitaya, J-L. Lazzari, and V.E. Borisenko: Structural, electronic and optical properties of II–IV–N2 compounds (II = Be, Zn; IV = Si, Ge). Phys. Status Solidi B 245, 142–148 (2008).

    Article  CAS  Google Scholar 

  12. F. Chiker, Z. Kebbab, R. Miloua, and N. Benramdane: Birefringence of optically uni-axial ternary semiconductors. Solid State Commun. 151, 1568–1573 (2011).

    Article  CAS  Google Scholar 

  13. C. Suh and K. Rajan: Combinatorial design of semiconductor chemistry for bandgap engineering: “virtual” combinatorial experimentation. Appl. Surf. Sci. 223, 148 (2004).

    Article  CAS  Google Scholar 

  14. S.C. Erwin and I. Zutic: Tailoring ferromagnetic chalcopyrites. Nat. Mater. 3, 410–414 (2004).

    Article  CAS  Google Scholar 

  15. V.L. Shaposhnikov, A.V. Krivosheeva, and V.E. Borisenko: Ab initio modeling of the structural, electronic, and optical properties of AIIBIVCV2 semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 85, 205201 (2012).

    Article  CAS  Google Scholar 

  16. S. Ullah, G. Murtaza, R. Khenata, and A.H. Reshak: Electronic, optical and bonding properties of MgYZ2 (Y = Si, Ge; Z = N, P) chalcopyrites from first principles. Mater. Sci. Semicond. Process. 26, 79–86 (2014).

    Article  CAS  Google Scholar 

  17. L. Shi, J. Hu, Y. Qin, Y. Duan, L. Wu, X. Yang, and G. Tang: First-principles study of structural, elastic and lattice dynamical properties of chalcopyrite BeSiV2 and MgSiV2 (V = P, As, Sb). J. Alloys Compd. 611, 210–218 (2014).

    Article  CAS  Google Scholar 

  18. A. Zunger, S. Wagner, P.M. Petroff: New materials and structures for photovoltaics. J. Electron. Mater. 22, 3 (1993).

    Article  CAS  Google Scholar 

  19. A.V. Krivosheeva, V.L. Shaposhnikov, F.A. D’Avitaya, and J.-L. Lazzari: Properties of novel chalcopyrite semiconductors for optoelectronics. In Phys., Chem. Appl. Nanostruct.: Rev. Short Notes, Proc. Int. Conf. NANOMEET.-2011, 620 (2011).

  20. G. Kresse and J. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758 (1999).

    Article  CAS  Google Scholar 

  21. G. Kresse and J. Hafner: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 47, 558 (1994).

    Article  Google Scholar 

  22. D.M. Ceperley and B.J. Alder: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).

    Article  CAS  Google Scholar 

  23. J.P. Perdew and Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B: Condens. Matter Mater. Phys. 45, 13244 (1992).

    Article  CAS  Google Scholar 

  24. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  25. Y. Zhang and W. Yang: Comment on generalized gradient approximation made simple. Phys. Rev. Lett. 80, 890 (1998).

    Article  CAS  Google Scholar 

  26. R. Armiento and A.E. Mattsson: Functional designed to include surface effects in self-consistent density functional theory. Phys. Rev. B: Condens. Matter Mater. Phys. 72, 085108 (2005).

    Article  CAS  Google Scholar 

  27. A.E. Mattsson and R. Armiento: Implementing and testing the AM05 spin density functional. Phys. Rev. B: Condens. Matter Mater. Phys. 79, 155101 (2009).

    Article  CAS  Google Scholar 

  28. A.E. Mattsson, R. Armiento, J. Paier, G. Kresse, J.M. Wills, and T.R. Mattsson: The AM05 density functional applied to solids. J. Chem. Phys. 128, 084714 (2008).

    Article  CAS  Google Scholar 

  29. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  CAS  Google Scholar 

  30. L. Page and P. Saxe: Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 104104 (2002).

    Article  CAS  Google Scholar 

  31. M.J. Mehl, J.E. Osburn, D.A. Papaconstantopoulos, and B.M. Klein: Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 41, 10311–10323 (1990).

    Article  CAS  Google Scholar 

  32. A. Abdellaouia, M. Ghaffour, M. Bouslama, S. Benalia, A. Ouerdane, B. Abidri, and Y. Monteil: Structural phase transition, elastic properties and electronic properties of chalcopyrite CuAlX2 (X = S, Se, Te). J. Alloys Compd. 487, 206–213 (2009).

    Article  CAS  Google Scholar 

  33. H. Fu, Z. Zhao, W. Liu, F. Peng, T. Gao, and X. Cheng: Ab initio calculations of elastic constants and thermodynamic properties of γTiAl under high pressures. Intermetallics 18, 761–766 (2010).

    Article  CAS  Google Scholar 

  34. H. Fu, D. Li, F. Peng, T. Gao, and X. Cheng: Structural and elastic properties of γTiAl under high pressure from electronic structure calculations. J. Alloys Compd. 473, 255–261 (2009).

    Article  CAS  Google Scholar 

  35. F. Mouhat and F-X. Coudert: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B: Condens. Matter Mater. Phys. 90, 224104 (2014).

    Article  CAS  Google Scholar 

  36. A. Reuss and Z. Angew: A calculation of the bulk modulus of polycrystalline materials. J. Math. Mech. 9, 49 (1929).

    CAS  Google Scholar 

  37. R. Hill: The elastic behavior of a crystalline aggregate. Proc. Phys. Soc., London, Sect. A 65, 349 (1952).

    Article  Google Scholar 

  38. I.R. Shein and A.L. Ivanovskii: Elastic properties of quaternary oxypnictides LaOFeAs and LaOFeP as basic phases for new 26–52 K superconducting materials from first principles. Scr. Mater. 59, 1099–1102 (2008).

    Article  CAS  Google Scholar 

  39. F. Peng, D. Chen, H. Fu, and X. Yang: Elastic and thermal properties of osmium under pressure. Philos. Mag. Lett. 91, 43–53 (2011).

    Article  CAS  Google Scholar 

  40. F. Peng, D. Chen, and X. Yang: Elasticity and thermodynamic properties of α-Ta4AlC3 under pressure. J. Alloys Compd. 489, 140–145 (2010).

    Article  CAS  Google Scholar 

  41. A.F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R.E. Hemley, and H.K. Mao: Synthesis of novel transition metal nitrides IrN2 and OsN2. Phys. Rev. Lett. 96, 155501 (2006).

    Article  CAS  Google Scholar 

  42. F. Peng, D. Chen, H. Fu, and T. Gao: The phase transition and elastic property of osmium carbide under pressure. Phys. Status Solidi B 248, 1222–1226 (2011).

    Article  CAS  Google Scholar 

  43. F. Peng, W. Peng, H. Fu, and X. Yang: Elasticity and thermodynamic properties of RuB2 under pressure. Phys. B 404, 3363–3367 (2009).

    Article  CAS  Google Scholar 

  44. D.G. Pettifor: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992).

    Article  CAS  Google Scholar 

  45. F. Peng, D. Chen, and X. Yang: First-principles calculations on elasticity of OsN2 under pressure. Solid State Commun. 149, 2135–2138 (2009).

    Article  CAS  Google Scholar 

  46. I.S. Sokolnikoff: Mathematical Theory of Elasticity, 2nd ed. (Krieger, Malabar FL, 1983).

    Google Scholar 

  47. S. Aydin and M. Simsek: First-principles calculations of elemental crystalline boron phases under high pressure: Orthorhombic B28 and tetragonal B48. J. Alloys Compd. 509, 5219 (2011).

    Article  CAS  Google Scholar 

  48. P. Ravindran, L. Fast, P.A. Korzhavyi, and B. Johansson: Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys., 84, 4891 (1998).

    Article  CAS  Google Scholar 

  49. S.I. Ranganathan and M. Ostoja-Starzewski: Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008).

    Article  CAS  Google Scholar 

  50. M.E. Fine, L.D. Brown, and H.L. Marcus: Elastic constants versus melting temperature in metals. Scr. Metall. 18, 951 (1984).

    Article  CAS  Google Scholar 

  51. M. Alouani, R.C. Albers, and M. Methfessel: Calculated elastic constants and structural properties of Mo and MoSi2. Phys. Rev. B: Condens. Matter Mater. Phys. 43, 6500 (1991).

    Article  CAS  Google Scholar 

  52. Z. Zhaochun, P. Ruiwu, and C. Nianyi: Artificial neural network prediction of the band gap and melting point of binary and ternary compound semiconductors. Mater. Sci. Eng., B 54, 149 (1998).

    Article  Google Scholar 

  53. K. Momma and F. Izumi: Vesta: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653 (2008).

    Article  CAS  Google Scholar 

  54. A.H. Reshak, Z.A. Alahmed, S. Azam: Electronic structure, electronic charge density and optical properties analyses of Rb2Al2B2O7 compound: DFT Calculation Int. J. Electrochem. Sci. 9, 975–989 (2014).

    Google Scholar 

  55. S. Adachi: Properties of Group-IV, III–V and II–VI Semiconductors (John Wiley & Sons, Chichester, 2005).

    Book  Google Scholar 

  56. P. Ravindran, A. Delin, B. Johansson, O. Eriksson, and J.M. Wills: Electronic structure, chemical bonding, and optical properties of ferroelectric and antiferroelectric NaNO2. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1776–1785 (1999).

    Article  CAS  Google Scholar 

  57. A.H. Reshak and S. Auluck: Electronic structure, linear, nonlinear optical susceptibilities and birefringence of CuInX2 (X = S, Se, Te) chalcopyrite-structure compounds. PMC Phys. B 1 (12), 1–17 (2008).

    Google Scholar 

  58. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz: Software WIEN2k, http://www.wien2k.at/ (accessed 2001).

  59. E. Artacho, J. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, and J.M. Soler: Software Siesta, http://www.uam.es/siesta/ (accessed 2001).

  60. A. Togo: Phonopy manual Release 1.6.2, 2012.

  61. A. Togo and I. Tanaka: First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasemin Oztekin Ciftci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocak, B., Ciftci, Y.O. Determination of the basic physical properties of semiconductor chalcopyrite type MgSnT2 (T = P, As, Sb) from first-principles calculations. Journal of Materials Research 31, 1518–1531 (2016). https://doi.org/10.1557/jmr.2016.133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.133

Navigation