Abstract
Using first-principles calculations, the fundamental understanding of the structure, electronic, elastic, lattice dynamic, and optic properties of three Mg-based ternary chalcopyrite semiconductors have been analyzed in detail within density functional theory scheme. To ensure an accurate determination of our calculated results, we considered five popular generalized gradient approximation formulations such as Perdew and Wang, Perdew–Burke and Ernzerhof (PBE), revised PBE, modified PBE, and Armiento–Mattson 2005 as well as local-density approximation (LDA) for the exchange-correlation potentials. It is found that all the calculated values of band gap for these compounds are underestimated compared to existing studies, while LDA-based functional gives better results than others. The electronic band structure demonstrated that these compounds have direct band gap at the Γ point in the Brillouin zone. It is observed that these compounds are mechanically stable in the chalcopyrite structure.
Similar content being viewed by others
References
J.L. Shay and J.H. Wernick: Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Application (Pergamon Press, New York, 1975).
J.E. Jaffe and A. Zunger: Anion displacements and the band-gap anomaly in ternary ABC2 chalcopyrite semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 27, 5176 (1983).
A. Zunger and J.E. Jaffe: Structural origin of optical bowing in semiconductor alloys. Phys. Rev. Lett. 51, 662 (1983).
J.E. Jaffe and A. Zunger: Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 29, 1882 (1984).
J.E. Jaffe and A. Zunger: Electronic structure of the ternary pnictide semiconductors ZnSiP2, ZnGeP2, ZnSnP2, ZnSiAs2, and MgSiP2. Phys. Rev. B: Condens. Matter Mater. Phys. 30, 741 (1984).
A. Continenza, S. Massidda, A.J. Freemann, T.M. de Pascale, F. Meloni, and M. Serra: Structural and electronic properties of narrow-gap ABC2 chalcopyrite semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 46, 10 070–10 077 (1992).
T.R. Paudel and W.R.L. Lambrecht: First-principles study of phonons and related ground-state properties and spectra in Zn–IV–N2 compounds. Phys. Rev. B: Condens. Matter Mater. Phys. 78, 115204 (2008).
S. Sharma, A.S. Verma, and V.K. Jindal: Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX2: X = S, Se, Te). Mater. Res. Bull. 53, 218–233 (2014).
H.S. Sainia, M. Singh, A.H. Reshak, and M.K. Kashyap: Effect of cation substitution on electronic band structure of ZnGeAs2 pnictides: A mBJLDA approach. J. Alloys Compd. 518, 74–79 (2012).
S. Sahin, Y.O. Ciftci, K. Colakoglu, and N. Korozlu: First principles studies of elastic, electronic and optical properties of chalcopyrite semiconductor ZnSnP2. J. Alloys Compd. 529, 1–7 (2012).
V.L. Shaposhnikov, A.V. Krivosheeva, F.A. D’Avitaya, J-L. Lazzari, and V.E. Borisenko: Structural, electronic and optical properties of II–IV–N2 compounds (II = Be, Zn; IV = Si, Ge). Phys. Status Solidi B 245, 142–148 (2008).
F. Chiker, Z. Kebbab, R. Miloua, and N. Benramdane: Birefringence of optically uni-axial ternary semiconductors. Solid State Commun. 151, 1568–1573 (2011).
C. Suh and K. Rajan: Combinatorial design of semiconductor chemistry for bandgap engineering: “virtual” combinatorial experimentation. Appl. Surf. Sci. 223, 148 (2004).
S.C. Erwin and I. Zutic: Tailoring ferromagnetic chalcopyrites. Nat. Mater. 3, 410–414 (2004).
V.L. Shaposhnikov, A.V. Krivosheeva, and V.E. Borisenko: Ab initio modeling of the structural, electronic, and optical properties of AIIBIVCV2 semiconductors. Phys. Rev. B: Condens. Matter Mater. Phys. 85, 205201 (2012).
S. Ullah, G. Murtaza, R. Khenata, and A.H. Reshak: Electronic, optical and bonding properties of MgYZ2 (Y = Si, Ge; Z = N, P) chalcopyrites from first principles. Mater. Sci. Semicond. Process. 26, 79–86 (2014).
L. Shi, J. Hu, Y. Qin, Y. Duan, L. Wu, X. Yang, and G. Tang: First-principles study of structural, elastic and lattice dynamical properties of chalcopyrite BeSiV2 and MgSiV2 (V = P, As, Sb). J. Alloys Compd. 611, 210–218 (2014).
A. Zunger, S. Wagner, P.M. Petroff: New materials and structures for photovoltaics. J. Electron. Mater. 22, 3 (1993).
A.V. Krivosheeva, V.L. Shaposhnikov, F.A. D’Avitaya, and J.-L. Lazzari: Properties of novel chalcopyrite semiconductors for optoelectronics. In Phys., Chem. Appl. Nanostruct.: Rev. Short Notes, Proc. Int. Conf. NANOMEET.-2011, 620 (2011).
G. Kresse and J. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758 (1999).
G. Kresse and J. Hafner: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 47, 558 (1994).
D.M. Ceperley and B.J. Alder: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).
J.P. Perdew and Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B: Condens. Matter Mater. Phys. 45, 13244 (1992).
J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Y. Zhang and W. Yang: Comment on generalized gradient approximation made simple. Phys. Rev. Lett. 80, 890 (1998).
R. Armiento and A.E. Mattsson: Functional designed to include surface effects in self-consistent density functional theory. Phys. Rev. B: Condens. Matter Mater. Phys. 72, 085108 (2005).
A.E. Mattsson and R. Armiento: Implementing and testing the AM05 spin density functional. Phys. Rev. B: Condens. Matter Mater. Phys. 79, 155101 (2009).
A.E. Mattsson, R. Armiento, J. Paier, G. Kresse, J.M. Wills, and T.R. Mattsson: The AM05 density functional applied to solids. J. Chem. Phys. 128, 084714 (2008).
J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
L. Page and P. Saxe: Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 104104 (2002).
M.J. Mehl, J.E. Osburn, D.A. Papaconstantopoulos, and B.M. Klein: Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 41, 10311–10323 (1990).
A. Abdellaouia, M. Ghaffour, M. Bouslama, S. Benalia, A. Ouerdane, B. Abidri, and Y. Monteil: Structural phase transition, elastic properties and electronic properties of chalcopyrite CuAlX2 (X = S, Se, Te). J. Alloys Compd. 487, 206–213 (2009).
H. Fu, Z. Zhao, W. Liu, F. Peng, T. Gao, and X. Cheng: Ab initio calculations of elastic constants and thermodynamic properties of γTiAl under high pressures. Intermetallics 18, 761–766 (2010).
H. Fu, D. Li, F. Peng, T. Gao, and X. Cheng: Structural and elastic properties of γTiAl under high pressure from electronic structure calculations. J. Alloys Compd. 473, 255–261 (2009).
F. Mouhat and F-X. Coudert: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B: Condens. Matter Mater. Phys. 90, 224104 (2014).
A. Reuss and Z. Angew: A calculation of the bulk modulus of polycrystalline materials. J. Math. Mech. 9, 49 (1929).
R. Hill: The elastic behavior of a crystalline aggregate. Proc. Phys. Soc., London, Sect. A 65, 349 (1952).
I.R. Shein and A.L. Ivanovskii: Elastic properties of quaternary oxypnictides LaOFeAs and LaOFeP as basic phases for new 26–52 K superconducting materials from first principles. Scr. Mater. 59, 1099–1102 (2008).
F. Peng, D. Chen, H. Fu, and X. Yang: Elastic and thermal properties of osmium under pressure. Philos. Mag. Lett. 91, 43–53 (2011).
F. Peng, D. Chen, and X. Yang: Elasticity and thermodynamic properties of α-Ta4AlC3 under pressure. J. Alloys Compd. 489, 140–145 (2010).
A.F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R.E. Hemley, and H.K. Mao: Synthesis of novel transition metal nitrides IrN2 and OsN2. Phys. Rev. Lett. 96, 155501 (2006).
F. Peng, D. Chen, H. Fu, and T. Gao: The phase transition and elastic property of osmium carbide under pressure. Phys. Status Solidi B 248, 1222–1226 (2011).
F. Peng, W. Peng, H. Fu, and X. Yang: Elasticity and thermodynamic properties of RuB2 under pressure. Phys. B 404, 3363–3367 (2009).
D.G. Pettifor: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992).
F. Peng, D. Chen, and X. Yang: First-principles calculations on elasticity of OsN2 under pressure. Solid State Commun. 149, 2135–2138 (2009).
I.S. Sokolnikoff: Mathematical Theory of Elasticity, 2nd ed. (Krieger, Malabar FL, 1983).
S. Aydin and M. Simsek: First-principles calculations of elemental crystalline boron phases under high pressure: Orthorhombic B28 and tetragonal B48. J. Alloys Compd. 509, 5219 (2011).
P. Ravindran, L. Fast, P.A. Korzhavyi, and B. Johansson: Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys., 84, 4891 (1998).
S.I. Ranganathan and M. Ostoja-Starzewski: Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008).
M.E. Fine, L.D. Brown, and H.L. Marcus: Elastic constants versus melting temperature in metals. Scr. Metall. 18, 951 (1984).
M. Alouani, R.C. Albers, and M. Methfessel: Calculated elastic constants and structural properties of Mo and MoSi2. Phys. Rev. B: Condens. Matter Mater. Phys. 43, 6500 (1991).
Z. Zhaochun, P. Ruiwu, and C. Nianyi: Artificial neural network prediction of the band gap and melting point of binary and ternary compound semiconductors. Mater. Sci. Eng., B 54, 149 (1998).
K. Momma and F. Izumi: Vesta: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653 (2008).
A.H. Reshak, Z.A. Alahmed, S. Azam: Electronic structure, electronic charge density and optical properties analyses of Rb2Al2B2O7 compound: DFT Calculation Int. J. Electrochem. Sci. 9, 975–989 (2014).
S. Adachi: Properties of Group-IV, III–V and II–VI Semiconductors (John Wiley & Sons, Chichester, 2005).
P. Ravindran, A. Delin, B. Johansson, O. Eriksson, and J.M. Wills: Electronic structure, chemical bonding, and optical properties of ferroelectric and antiferroelectric NaNO2. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1776–1785 (1999).
A.H. Reshak and S. Auluck: Electronic structure, linear, nonlinear optical susceptibilities and birefringence of CuInX2 (X = S, Se, Te) chalcopyrite-structure compounds. PMC Phys. B 1 (12), 1–17 (2008).
P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz: Software WIEN2k, http://www.wien2k.at/ (accessed 2001).
E. Artacho, J. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, and J.M. Soler: Software Siesta, http://www.uam.es/siesta/ (accessed 2001).
A. Togo: Phonopy manual Release 1.6.2, 2012.
A. Togo and I. Tanaka: First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kocak, B., Ciftci, Y.O. Determination of the basic physical properties of semiconductor chalcopyrite type MgSnT2 (T = P, As, Sb) from first-principles calculations. Journal of Materials Research 31, 1518–1531 (2016). https://doi.org/10.1557/jmr.2016.133
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2016.133