Abstract
Sn doped TiO2 (SDT) hierarchical nanorods have been synthesized by using nanocystalline cellulose nanorod as biotemplate. Experimental results show that the phase transition from anatase to rutile can be realized by increasing the calcination temperature. In contrast to enhancing the calcination temperature, the Sn doping can more effectively improve the phase transition with remaining morphology due to the similar ionic radius and charge between Sn and Ti. The crystallinity, electronic structure, interface charge transfer process, and the specific surface area have a strong effect on the photocatalytic activity of the hierarchical TiO2 and SDT nanorods. Furthermore, the photocatalytic activity of SDT hierarchical nanorods can be obviously improved by loaded Au nanoparticles on the surface due to the local surface plasmon resonance effect of Au and formation of a Schottky barrier at the Au/TiO2 interface, which is in favor of the effective separation of photoinduced carriers and the formation of superoxide anion radicals.
Similar content being viewed by others
References
J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D.W. Bahnemann: Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014).
X.B. Chen, L. Liu, and F.Q. Huang: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861–1885 (2015).
M. Kapilashrami, Y. Zhang, Y.S. Liu, A. Hagfeldt, and J.H. Guo: Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 114, 9662–9707 (2014).
L. Liu and X.B. Chen: Titanmium dioxide nanomaterials: Self-structural modifications, Chem. Rev. 114, 9890–9918 (2014).
W. Kim, T. Tachikawa, G.H. Moon, T. Majima, and W. Choi: Molecular-level understanding of the photocatalytic activity difference between anatase and rutile nanoparticles. Angew. Chem., Int. Ed. 53, 14036–14041 (2014).
J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S.Z. Qiao: Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787–7812 (2014).
K.H.A. Fujishima: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).
X.B. Chen, L. Liu, P.Y. Yu, and S.S. Mao: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).
F.F. Chen, F.L. Cao, H.X. Li, and Z.F. Bian: Exploring the important role of nanocrystals orientation in TiO2 superstructure on photocatalytic performances. Langmuir 31, 3494–3499 (2015).
J.Y. Cao, Y.J. Zhang, L.Q. Liu, and J.H. Ye: A p-type Cr-doped TiO2 photo-electrode for photo-reduction. Chem. Commun.. 49, 3440–3442 (2013).
S. Ponja, S. Sathasivam, N. Chadwick, A. Kafizas, S.M. Bawaked, A.Y. Obaid, S. Al-Thabaiti, S.N. Basahel, I.P. Parkin, and C.J. Carmalt. Aerosol assisted chemical vapour deposition of hydrophobic TiO2–SnO2 composite film with novel microstructure and enhanced photocatalytic activity. J. Mater. Chem. A 1, 6271–6278 (2013).
C.Y. Mao, F. Zuo, Y. Hou, X.H. Bu, and P.Y. Feng: In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction. Angew. Chem., Int. Ed. 53, pp. 10485–10489 (2014).
W. Zhou, W. Li, J.Q. Wang, Y. Qu, Y. Yang, Y. Xie, K.F. Zhang, L. Wang, H.G. Fu, and D.Y. Zhao: Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 136, 9280–9283 (2014).
H. Xu, S.X. Ouyang, L.Q. Liu, P. Reunchan, N. Umezawa, and J.H. Ye: Recent advances in TiO2-based photocatalysis. J. Mater. Chem. A 2, 12642–12661 (2014).
K. Bourikas, C. Kordulis, and A. Lycourghiotis: Titanium dioxide (anatase and rutile): Surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. Chem. Rev. 114, 9754–9823 (2014).
J.B. Zhang, B. Xu, J.L. Chen, L.J. Wang, and W.J. Tian: Oligo(phenothiazine)s: Twisted intramolecular charge transfer and aggregation-induced emission. J. Phys. Chem. C 117, 23117–23125 (2013).
G.Z. Fu, Y.Q. Yang, G. Wei, X. Shu, N. Qiao, and L. Deng: Influence of Sn doping on phase transformation and crystallite growth of TiO2 nanocrystals. J. Nanomater. 2014, 1–5 (2014).
S.K. Dutta, S.K. Mehetor, and N. Pradhan: Metal semiconductor heterostructures for photocatalytic conversion of light energy. J. Phys. Chem. Lett. 6, 936–944 (2015).
D. Yang, Y. Sun, Z. Tong, Y. Tian, Y. Li, and Z. Jiang: Synthesis of Ag/TiO2 nanotube heterojunction with improved visible-light photocatalytic performance inspired by bioadhesion. J. Phys. Chem. C 119, 5827–5835 (2015).
H.J. Li, Y. Zhou, W.G. Tu, J. Ye, and Z.G. Zou: State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 25, 998–1013 (2015).
M. McEntee, A. Stevanovic, W. Tang, M. Neurock, and J.T. Yates: Electric field changes on Au nanoparticles on semiconductor supports-the molecular voltmeter and other methods to observe adsorbate-induced charge-transfer effects in Au/TiO2 nanocatalysts. J. Am. Chem. Soc. 137, 1972–1982 (2015).
K. Qian, B.C. Sweeny, A.C. Johnston-Peck, W. Niu, J.O. Graham, J.S. DuChene, J. Qiu, Y.C. Wang, M.H. Engelhard, D. Su, E.A. Stach, and W. D. Wei: Surface plasmon-driven water reduction: Gold nanoparticle size matters. J. Am. Chem. Soc. 136, 9842–9845 (2014).
J.S. DuChene, B.C. Sweeny, A.C. Johnston-Peck, D. Su, E.A. Stach, and W.D. Wei: Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem., Int. Ed. 53, 7887–7891 (2014).
J. Pal, A.K. Sasmal, M. Ganguly, and T. Pal: Surface plasmon effect of Cu and presence of n–p heterojunction in oxide nanocomposites for visible light photocatalysis. J. Phys. Chem. C 119, 3780–3790 (2015).
S. Yu, S. Y. Lee, J. Yeo, J. W. Han, and J. Yi: Kinetic and mechanistic insights into the all-solid-state Z-schematic system. J. Phys. Chem. C 118, 29583–29590 (2014).
L. Passoni, L. Criante, F. Fumagalli, F. Scotognella, G. Lanzani, and F.D. Fonzo: Self-assembled hierarchical nanostructures for high-efficiency porous photonic crystals. ACS Nano 8, 12167–12174 (2014).
L. Liu, T.D. Dao, R. Kodiyath, Q. Kang, H. Abe, T. Nagao, and J.H. Ye: Plasmonic Janus-composite photocatalyst comprising Au and C-TiO2 for enhanced aerobic oxidation over a broad visible-light range. Adv. Funct. Mater. 24, 7754–7762 (2014).
Z.F. Jiang, W. Wei, D.J. Mao, C. Chen, Y. Shi, X.M. Lv, and J.M. Xie, Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres with enhanced visible light photocatalytic activity. Nanoscale 7, 784–797 (2015).
S. Neatu, J.A. Macia-Agullo, P. Concepcion, and H. Garcia: Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by vater. J. Am. Chem. Soc. 136, 15969–15976 (2014).
D.W. Wang, Y. Li, G. Li Puma, C. Wang, P.F. Wang, W.L. Zhang, and Q. Wang: Ag/AgCl@helical chiral TiO2 nanofibers as a visible-light driven plasmon photocatalyst. Chem. Commun. 49, 10367–10369 (2013).
M. Murdoch, G.I. Waterhouse, M.A. Nadeem, J.B. Metson, M.A. Keane, R.F. Howe, J. Llorca, and H. Idriss: The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 3, 489–492 (2011).
R. Kodiyath, M. Manikandan, L. Liu, G.V. Ramesh, S. Koyasu, M. Miyauchi, Y. Sakuma, T. Tanabe, T. Gunji, T. Duy Dao, S. Ueda, T. Nagao, J. Ye, and H. Abe, Visible-light photodecomposition of acetaldehyde by TiO2-coated gold nanocages: Plasmon-mediated hot electron transport via defect states. Chem. Commun. 50, 15553–15556 (2014).
D. Ding, K. Liu, S. He, C. Gao, and Y. Yin: Ligand-exchange assisted formation of Au/TiO2 Schottky contact for visible-light photocatalysis. Nano Lett. 14, 6731–6736 (2014).
Z. Xiong, L. Zhang, and X.S. Zhao: One-step synthesis of metal@titania core-shell materials for visible-light photocatalysis and catalytic reduction reaction. Chem.-Eur. J. 20, 14715–14720 (2014).
Y. Katagi, E. Kazuma, and T. Tatsuma: Photoelectrochemical synthesis, optical properties and plasmon-induced charge separation behaviour of gold nanodumbbells on TiO2. Nanoscale 6, 14543–14548 (2014).
R. Jiang, B. Li, C. Fang, and J. Wang: Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 26, 5274–5309 (2014).
T. Chen, Y. Wang, Y. Wang, and Y. Xu: Biotemplated synthesis of hierarchically nanostructured TiO2 using cellulose and its applications in photocatalysis. RSC Adv. 5, 1673–1679 (2015).
X.F. Wu, H.Y. Song, J.M. Yoon, Y.T. Yu, and Y.F. Chen: Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir 25, 6438–6447 (2009).
Y.Y. Duan and S.A. Che: Electron transition-based optical activity (ETOA) of achiral metal oxides derived from chiral mesoporous silica. Chem.-Eur. J. 19, 10468–10472 (2013).
S.H. Liu, L. Han, Y.Y. Duan, S. Asahina, O. Terasaki, Y.Y. Cao, B. Liu, L.G. Ma, J.L. Zhang, and S.A. Che: Synthesis of chiral TiO2 nanofibre with electron transition-based optical activity. Nat. Commun. 3, 1215–1220 (2012).
H.L. Zhu, S. Parvinian, C. Preston, O. Vaaland, Z.C. Ruan, and L.B. Hu, Transparent nanopaper with tailored optical properties. Nanoscale 5, 3787–3792 (2013).
H.Y. Yu, Z.Y. Qin, B.L. Liang, N. Liu, Z. Zhou, and L. Chen: Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J. Mater. Chem. A 1, 3938–3944 (2013).
M. Möller, F. Harnisch, and U. Schröder: Hydrothermal liquefaction of cellulose in subcritical water-the role of crystallinity on the cellulose reactivity. RSC Adv. 3, 11035–11044 (2013).
W. Stöber, A. Fink, and E. Bohn: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).
Z.C. Lai, F. Peng, H.J. Wang, H. Yu, S.Q. Zhang, and H.J. Zhao: A new insight into regulating high energy facets of rutile TiO2. J. Mater. Chem. A 1, 4182–4185 (2013).
K. Sabyrov, N.D. Burrows, and R.L. Penn: Size-dependent anatase to rutile phase transformation and particle growth. Chem. Mater. 25, 1408–1415 (2013).
A. Li, Y. Jin, D. Muggli, D.T. Pierce, H. Aranwela, G.K. Marasinghe, T. Knutson, G. Brockman, and J.X. Zhao: Nanoscale effects of silica particle supports on the formation and properties of TiO2 nanocatalysts. Nanoscale 5, 5854–5862 (2013).
Y. Wang, H. Zhang, P. Liu, X. Yao, and H. Zhao: Engineering the band gap of bare titanium dioxide materials for visible-light activity: A theoretical prediction. RSC Adv. 3, 8777–8782 (2013).
Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, and J. Ye: Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J. Mater. Chem. A 1, 5766 (2013).
P. Goswami and J.N. Ganguli: A novel synthetic approach for the preparation of sulfated titania with enhanced photocatalytic activity. RSC Adv. 3, 8878–8888 (2013).
H. Zhang, Y. Zhao, S. Chen, B. Yu, J. Xu, H. Xu, L. Hao, and Z. Liu: Ti3+ self-doped TiOx@anatase core–shell structure with enhanced visible light photocatalytic activity. J. Mater. Chem. A 1, 6138–6144 (2013).
L.P. Chen, S. Li, Z.P. Liu, Y.C. Lu, D.J. Wang, Y.H. Lin, and T.F. Xie: Surface photovoltage phase spectra for analysing the photogenerated charge transfer and photocatalytic activity of ZnFe2O4–TiO2 nanotube arrays. Phys. Chem. Chem. Phys. 15, 14262–14269 (2013).
L.L. Peng, T.F. Xie, Y.C. Lu, H.M. Fan, and D.J. Wang: Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Phys. Chem. Chem. Phys. 12, 8033–8041 (2010).
A. Yamakata, J.J.M. Vequizo, and H. Matsunaga: Distinctive behavior of photogenerated electrons and holes in anatase and rutile TiO2 powders. J. Phys. Chem. C 119, 24538–24545 (2015).
S. Naya, T. Niwa, T. Kume, and H. Tada: Visible-light-induced electron transport from small to large nanoparticles in bimodal gold nanoparticle-loaded titanium(IV) oxide. Angew. Chem., Int. Ed. 53, 7305–7309 (2014).
S. Mubeen, J. Lee, W. Lee, N. Singh, G.D. Stucky, and M. Moskovits: On the plasmonic photovoltaic. ACS Nano 8, 6066–6073 (2014).
F. Zhang, H.Q. Cao, D.M. Yue, J.X. Zhang, and M.Z. Qu: Enhanced anode performances of polyaniline–TiO2-reduced graphene oxide nanocomposites for lithium ion batteries. Inorg. Chem. 51, 9544–9551 (2012).
J.Q. Yan, G.J. Wu, N.J. Guan, L.D. Li, Z.X. Li, and X.Z. Cao: Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile. Phys. Chem. Chem. Phys. 15, 10978–10988 (2013).
A. Iwabuchi, C.K. Choo, and K. Tanaka: Titania nanoparticles prepared with pulsed laser ablation of rutile single crystals in water. J. Phys. Chem. B 108, 10863–10871 (2004).
B.K. Kaleji: Comparison of optical and structural properties of nanostructure TiO2 thin film doped by Sn and Nb. J. Sol-Gel. Sci. Techn. 67, 312–320 (2013).
X.S. Wang, Y. Wang, J.R. Zhu, and Y. Xu: Hierarchical AgNR@Cys@AuNPs helical core–satellite nanostructure: Shape-dependent assembly and chiroptical response. J. Phys. Chem. C 118, 5782–5788 (2014).
S.W. Liu, J.Q. Xia, and J.G. Yu: Amine-functionalized titanate nanosheet-assembled yolk@shell microspheres for efficient cocatalyst-free visible-light photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces. 7, 8166–8175 (2015).
X. Li, J.G. Yu, J.X. Low, Y.P. Fang, J. Xiao, and X.B. Chen: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485–2534 (2015).
A. Kafizas, D. Adriaens, A. Mills, and I.P. Parkin: Simple method for the rapid simultaneous screening of photocatalytic activity over multiple positions of self-cleaning films. Phys. Chem. Chem. Phys. 11, 8367–8375 (2009).
ACKNOWLEDGMENTS
The authors are grateful to National Natural Science Foundation of China for financial support (20971051).
Author information
Authors and Affiliations
Corresponding author
Supplementary Material
Rights and permissions
About this article
Cite this article
Yan, Y., Chen, T., Zou, Y. et al. Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. Journal of Materials Research 31, 1383–1392 (2016). https://doi.org/10.1557/jmr.2016.128
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2016.128