Skip to main content
Log in

Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Sn doped TiO2 (SDT) hierarchical nanorods have been synthesized by using nanocystalline cellulose nanorod as biotemplate. Experimental results show that the phase transition from anatase to rutile can be realized by increasing the calcination temperature. In contrast to enhancing the calcination temperature, the Sn doping can more effectively improve the phase transition with remaining morphology due to the similar ionic radius and charge between Sn and Ti. The crystallinity, electronic structure, interface charge transfer process, and the specific surface area have a strong effect on the photocatalytic activity of the hierarchical TiO2 and SDT nanorods. Furthermore, the photocatalytic activity of SDT hierarchical nanorods can be obviously improved by loaded Au nanoparticles on the surface due to the local surface plasmon resonance effect of Au and formation of a Schottky barrier at the Au/TiO2 interface, which is in favor of the effective separation of photoinduced carriers and the formation of superoxide anion radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D.W. Bahnemann: Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014).

    Article  CAS  Google Scholar 

  2. X.B. Chen, L. Liu, and F.Q. Huang: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861–1885 (2015).

    Article  CAS  Google Scholar 

  3. M. Kapilashrami, Y. Zhang, Y.S. Liu, A. Hagfeldt, and J.H. Guo: Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 114, 9662–9707 (2014).

    Article  CAS  Google Scholar 

  4. L. Liu and X.B. Chen: Titanmium dioxide nanomaterials: Self-structural modifications, Chem. Rev. 114, 9890–9918 (2014).

    Article  CAS  Google Scholar 

  5. W. Kim, T. Tachikawa, G.H. Moon, T. Majima, and W. Choi: Molecular-level understanding of the photocatalytic activity difference between anatase and rutile nanoparticles. Angew. Chem., Int. Ed. 53, 14036–14041 (2014).

    Article  CAS  Google Scholar 

  6. J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S.Z. Qiao: Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787–7812 (2014).

    Article  CAS  Google Scholar 

  7. K.H.A. Fujishima: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  8. X.B. Chen, L. Liu, P.Y. Yu, and S.S. Mao: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).

    Article  CAS  Google Scholar 

  9. F.F. Chen, F.L. Cao, H.X. Li, and Z.F. Bian: Exploring the important role of nanocrystals orientation in TiO2 superstructure on photocatalytic performances. Langmuir 31, 3494–3499 (2015).

    Article  CAS  Google Scholar 

  10. J.Y. Cao, Y.J. Zhang, L.Q. Liu, and J.H. Ye: A p-type Cr-doped TiO2 photo-electrode for photo-reduction. Chem. Commun.. 49, 3440–3442 (2013).

    Article  CAS  Google Scholar 

  11. S. Ponja, S. Sathasivam, N. Chadwick, A. Kafizas, S.M. Bawaked, A.Y. Obaid, S. Al-Thabaiti, S.N. Basahel, I.P. Parkin, and C.J. Carmalt. Aerosol assisted chemical vapour deposition of hydrophobic TiO2–SnO2 composite film with novel microstructure and enhanced photocatalytic activity. J. Mater. Chem. A 1, 6271–6278 (2013).

    Article  CAS  Google Scholar 

  12. C.Y. Mao, F. Zuo, Y. Hou, X.H. Bu, and P.Y. Feng: In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction. Angew. Chem., Int. Ed. 53, pp. 10485–10489 (2014).

    Article  CAS  Google Scholar 

  13. W. Zhou, W. Li, J.Q. Wang, Y. Qu, Y. Yang, Y. Xie, K.F. Zhang, L. Wang, H.G. Fu, and D.Y. Zhao: Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 136, 9280–9283 (2014).

    Article  CAS  Google Scholar 

  14. H. Xu, S.X. Ouyang, L.Q. Liu, P. Reunchan, N. Umezawa, and J.H. Ye: Recent advances in TiO2-based photocatalysis. J. Mater. Chem. A 2, 12642–12661 (2014).

    Article  CAS  Google Scholar 

  15. K. Bourikas, C. Kordulis, and A. Lycourghiotis: Titanium dioxide (anatase and rutile): Surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. Chem. Rev. 114, 9754–9823 (2014).

    Article  CAS  Google Scholar 

  16. J.B. Zhang, B. Xu, J.L. Chen, L.J. Wang, and W.J. Tian: Oligo(phenothiazine)s: Twisted intramolecular charge transfer and aggregation-induced emission. J. Phys. Chem. C 117, 23117–23125 (2013).

    Article  CAS  Google Scholar 

  17. G.Z. Fu, Y.Q. Yang, G. Wei, X. Shu, N. Qiao, and L. Deng: Influence of Sn doping on phase transformation and crystallite growth of TiO2 nanocrystals. J. Nanomater. 2014, 1–5 (2014).

    Google Scholar 

  18. S.K. Dutta, S.K. Mehetor, and N. Pradhan: Metal semiconductor heterostructures for photocatalytic conversion of light energy. J. Phys. Chem. Lett. 6, 936–944 (2015).

    Article  CAS  Google Scholar 

  19. D. Yang, Y. Sun, Z. Tong, Y. Tian, Y. Li, and Z. Jiang: Synthesis of Ag/TiO2 nanotube heterojunction with improved visible-light photocatalytic performance inspired by bioadhesion. J. Phys. Chem. C 119, 5827–5835 (2015).

    Article  CAS  Google Scholar 

  20. H.J. Li, Y. Zhou, W.G. Tu, J. Ye, and Z.G. Zou: State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 25, 998–1013 (2015).

    Article  CAS  Google Scholar 

  21. M. McEntee, A. Stevanovic, W. Tang, M. Neurock, and J.T. Yates: Electric field changes on Au nanoparticles on semiconductor supports-the molecular voltmeter and other methods to observe adsorbate-induced charge-transfer effects in Au/TiO2 nanocatalysts. J. Am. Chem. Soc. 137, 1972–1982 (2015).

    Article  CAS  Google Scholar 

  22. K. Qian, B.C. Sweeny, A.C. Johnston-Peck, W. Niu, J.O. Graham, J.S. DuChene, J. Qiu, Y.C. Wang, M.H. Engelhard, D. Su, E.A. Stach, and W. D. Wei: Surface plasmon-driven water reduction: Gold nanoparticle size matters. J. Am. Chem. Soc. 136, 9842–9845 (2014).

    Article  CAS  Google Scholar 

  23. J.S. DuChene, B.C. Sweeny, A.C. Johnston-Peck, D. Su, E.A. Stach, and W.D. Wei: Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem., Int. Ed. 53, 7887–7891 (2014).

    Article  CAS  Google Scholar 

  24. J. Pal, A.K. Sasmal, M. Ganguly, and T. Pal: Surface plasmon effect of Cu and presence of n–p heterojunction in oxide nanocomposites for visible light photocatalysis. J. Phys. Chem. C 119, 3780–3790 (2015).

    Article  CAS  Google Scholar 

  25. S. Yu, S. Y. Lee, J. Yeo, J. W. Han, and J. Yi: Kinetic and mechanistic insights into the all-solid-state Z-schematic system. J. Phys. Chem. C 118, 29583–29590 (2014).

    Article  CAS  Google Scholar 

  26. L. Passoni, L. Criante, F. Fumagalli, F. Scotognella, G. Lanzani, and F.D. Fonzo: Self-assembled hierarchical nanostructures for high-efficiency porous photonic crystals. ACS Nano 8, 12167–12174 (2014).

    Article  CAS  Google Scholar 

  27. L. Liu, T.D. Dao, R. Kodiyath, Q. Kang, H. Abe, T. Nagao, and J.H. Ye: Plasmonic Janus-composite photocatalyst comprising Au and C-TiO2 for enhanced aerobic oxidation over a broad visible-light range. Adv. Funct. Mater. 24, 7754–7762 (2014).

    Article  CAS  Google Scholar 

  28. Z.F. Jiang, W. Wei, D.J. Mao, C. Chen, Y. Shi, X.M. Lv, and J.M. Xie, Silver-loaded nitrogen-doped yolk-shell mesoporous TiO2 hollow microspheres with enhanced visible light photocatalytic activity. Nanoscale 7, 784–797 (2015).

    Article  CAS  Google Scholar 

  29. S. Neatu, J.A. Macia-Agullo, P. Concepcion, and H. Garcia: Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by vater. J. Am. Chem. Soc. 136, 15969–15976 (2014).

    Article  CAS  Google Scholar 

  30. D.W. Wang, Y. Li, G. Li Puma, C. Wang, P.F. Wang, W.L. Zhang, and Q. Wang: Ag/AgCl@helical chiral TiO2 nanofibers as a visible-light driven plasmon photocatalyst. Chem. Commun. 49, 10367–10369 (2013).

    Article  CAS  Google Scholar 

  31. M. Murdoch, G.I. Waterhouse, M.A. Nadeem, J.B. Metson, M.A. Keane, R.F. Howe, J. Llorca, and H. Idriss: The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 3, 489–492 (2011).

    Article  CAS  Google Scholar 

  32. R. Kodiyath, M. Manikandan, L. Liu, G.V. Ramesh, S. Koyasu, M. Miyauchi, Y. Sakuma, T. Tanabe, T. Gunji, T. Duy Dao, S. Ueda, T. Nagao, J. Ye, and H. Abe, Visible-light photodecomposition of acetaldehyde by TiO2-coated gold nanocages: Plasmon-mediated hot electron transport via defect states. Chem. Commun. 50, 15553–15556 (2014).

    Article  CAS  Google Scholar 

  33. D. Ding, K. Liu, S. He, C. Gao, and Y. Yin: Ligand-exchange assisted formation of Au/TiO2 Schottky contact for visible-light photocatalysis. Nano Lett. 14, 6731–6736 (2014).

    Article  CAS  Google Scholar 

  34. Z. Xiong, L. Zhang, and X.S. Zhao: One-step synthesis of metal@titania core-shell materials for visible-light photocatalysis and catalytic reduction reaction. Chem.-Eur. J. 20, 14715–14720 (2014).

    Article  CAS  Google Scholar 

  35. Y. Katagi, E. Kazuma, and T. Tatsuma: Photoelectrochemical synthesis, optical properties and plasmon-induced charge separation behaviour of gold nanodumbbells on TiO2. Nanoscale 6, 14543–14548 (2014).

    Article  CAS  Google Scholar 

  36. R. Jiang, B. Li, C. Fang, and J. Wang: Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 26, 5274–5309 (2014).

    Article  CAS  Google Scholar 

  37. T. Chen, Y. Wang, Y. Wang, and Y. Xu: Biotemplated synthesis of hierarchically nanostructured TiO2 using cellulose and its applications in photocatalysis. RSC Adv. 5, 1673–1679 (2015).

    Article  CAS  Google Scholar 

  38. X.F. Wu, H.Y. Song, J.M. Yoon, Y.T. Yu, and Y.F. Chen: Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir 25, 6438–6447 (2009).

    Article  CAS  Google Scholar 

  39. Y.Y. Duan and S.A. Che: Electron transition-based optical activity (ETOA) of achiral metal oxides derived from chiral mesoporous silica. Chem.-Eur. J. 19, 10468–10472 (2013).

    Article  CAS  Google Scholar 

  40. S.H. Liu, L. Han, Y.Y. Duan, S. Asahina, O. Terasaki, Y.Y. Cao, B. Liu, L.G. Ma, J.L. Zhang, and S.A. Che: Synthesis of chiral TiO2 nanofibre with electron transition-based optical activity. Nat. Commun. 3, 1215–1220 (2012).

    Article  CAS  Google Scholar 

  41. H.L. Zhu, S. Parvinian, C. Preston, O. Vaaland, Z.C. Ruan, and L.B. Hu, Transparent nanopaper with tailored optical properties. Nanoscale 5, 3787–3792 (2013).

    Article  CAS  Google Scholar 

  42. H.Y. Yu, Z.Y. Qin, B.L. Liang, N. Liu, Z. Zhou, and L. Chen: Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J. Mater. Chem. A 1, 3938–3944 (2013).

    Article  CAS  Google Scholar 

  43. M. Möller, F. Harnisch, and U. Schröder: Hydrothermal liquefaction of cellulose in subcritical water-the role of crystallinity on the cellulose reactivity. RSC Adv. 3, 11035–11044 (2013).

    Article  CAS  Google Scholar 

  44. W. Stöber, A. Fink, and E. Bohn: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Article  Google Scholar 

  45. Z.C. Lai, F. Peng, H.J. Wang, H. Yu, S.Q. Zhang, and H.J. Zhao: A new insight into regulating high energy facets of rutile TiO2. J. Mater. Chem. A 1, 4182–4185 (2013).

    Article  CAS  Google Scholar 

  46. K. Sabyrov, N.D. Burrows, and R.L. Penn: Size-dependent anatase to rutile phase transformation and particle growth. Chem. Mater. 25, 1408–1415 (2013).

    Article  CAS  Google Scholar 

  47. A. Li, Y. Jin, D. Muggli, D.T. Pierce, H. Aranwela, G.K. Marasinghe, T. Knutson, G. Brockman, and J.X. Zhao: Nanoscale effects of silica particle supports on the formation and properties of TiO2 nanocatalysts. Nanoscale 5, 5854–5862 (2013).

    Article  CAS  Google Scholar 

  48. Y. Wang, H. Zhang, P. Liu, X. Yao, and H. Zhao: Engineering the band gap of bare titanium dioxide materials for visible-light activity: A theoretical prediction. RSC Adv. 3, 8777–8782 (2013).

    Article  CAS  Google Scholar 

  49. Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, and J. Ye: Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J. Mater. Chem. A 1, 5766 (2013).

    Article  CAS  Google Scholar 

  50. P. Goswami and J.N. Ganguli: A novel synthetic approach for the preparation of sulfated titania with enhanced photocatalytic activity. RSC Adv. 3, 8878–8888 (2013).

    Article  CAS  Google Scholar 

  51. H. Zhang, Y. Zhao, S. Chen, B. Yu, J. Xu, H. Xu, L. Hao, and Z. Liu: Ti3+ self-doped TiOx@anatase core–shell structure with enhanced visible light photocatalytic activity. J. Mater. Chem. A 1, 6138–6144 (2013).

    Article  CAS  Google Scholar 

  52. L.P. Chen, S. Li, Z.P. Liu, Y.C. Lu, D.J. Wang, Y.H. Lin, and T.F. Xie: Surface photovoltage phase spectra for analysing the photogenerated charge transfer and photocatalytic activity of ZnFe2O4–TiO2 nanotube arrays. Phys. Chem. Chem. Phys. 15, 14262–14269 (2013).

    Article  CAS  Google Scholar 

  53. L.L. Peng, T.F. Xie, Y.C. Lu, H.M. Fan, and D.J. Wang: Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Phys. Chem. Chem. Phys. 12, 8033–8041 (2010).

    Article  CAS  Google Scholar 

  54. A. Yamakata, J.J.M. Vequizo, and H. Matsunaga: Distinctive behavior of photogenerated electrons and holes in anatase and rutile TiO2 powders. J. Phys. Chem. C 119, 24538–24545 (2015).

    Article  CAS  Google Scholar 

  55. S. Naya, T. Niwa, T. Kume, and H. Tada: Visible-light-induced electron transport from small to large nanoparticles in bimodal gold nanoparticle-loaded titanium(IV) oxide. Angew. Chem., Int. Ed. 53, 7305–7309 (2014).

    Article  CAS  Google Scholar 

  56. S. Mubeen, J. Lee, W. Lee, N. Singh, G.D. Stucky, and M. Moskovits: On the plasmonic photovoltaic. ACS Nano 8, 6066–6073 (2014).

    Article  CAS  Google Scholar 

  57. F. Zhang, H.Q. Cao, D.M. Yue, J.X. Zhang, and M.Z. Qu: Enhanced anode performances of polyaniline–TiO2-reduced graphene oxide nanocomposites for lithium ion batteries. Inorg. Chem. 51, 9544–9551 (2012).

    Article  CAS  Google Scholar 

  58. J.Q. Yan, G.J. Wu, N.J. Guan, L.D. Li, Z.X. Li, and X.Z. Cao: Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile. Phys. Chem. Chem. Phys. 15, 10978–10988 (2013).

    Article  CAS  Google Scholar 

  59. A. Iwabuchi, C.K. Choo, and K. Tanaka: Titania nanoparticles prepared with pulsed laser ablation of rutile single crystals in water. J. Phys. Chem. B 108, 10863–10871 (2004).

    Article  CAS  Google Scholar 

  60. B.K. Kaleji: Comparison of optical and structural properties of nanostructure TiO2 thin film doped by Sn and Nb. J. Sol-Gel. Sci. Techn. 67, 312–320 (2013).

    Article  CAS  Google Scholar 

  61. X.S. Wang, Y. Wang, J.R. Zhu, and Y. Xu: Hierarchical AgNR@Cys@AuNPs helical core–satellite nanostructure: Shape-dependent assembly and chiroptical response. J. Phys. Chem. C 118, 5782–5788 (2014).

    Article  CAS  Google Scholar 

  62. S.W. Liu, J.Q. Xia, and J.G. Yu: Amine-functionalized titanate nanosheet-assembled yolk@shell microspheres for efficient cocatalyst-free visible-light photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces. 7, 8166–8175 (2015).

    Article  CAS  Google Scholar 

  63. X. Li, J.G. Yu, J.X. Low, Y.P. Fang, J. Xiao, and X.B. Chen: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485–2534 (2015).

    Article  CAS  Google Scholar 

  64. A. Kafizas, D. Adriaens, A. Mills, and I.P. Parkin: Simple method for the rapid simultaneous screening of photocatalytic activity over multiple positions of self-cleaning films. Phys. Chem. Chem. Phys. 11, 8367–8375 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to National Natural Science Foundation of China for financial support (20971051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Chen, T., Zou, Y. et al. Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. Journal of Materials Research 31, 1383–1392 (2016). https://doi.org/10.1557/jmr.2016.128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.128

Navigation