Skip to main content
Log in

Photocatalytic activity enhancement of TiO2 nanocrystalline thin film with surface modification of poly-3-hexylthiophene by in situ polymerization

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To improve photocatalytic activity of TiO2, 3-hexylthiophene monomers were in situ polymerized on porous TiO2 nanocrystalline thin film. Poly-3-hexylthiophene (P3HT) was homogenously modified on the thin film. The surface modification amounts of P3HT were controlled using different concentrations of 3-hexylthiophene monomer ether solutions and detected by the absorption spectra. The photocatalytic performance tested in methyl orange solution under ultraviolet light irradiation was significantly enhanced due to the modification of P3HT. Within 210 min, approximately 80% of methyl orange was degraded for the modified film with the optimized modification amount, it is twice higher than that of the film without modification. Photoluminescence spectra and open-circuit voltage decay processes of the samples were measured to demonstrate the photocatalytic activity enhancement mechanism due to the in-situ polymerization of P3HT. The homogenous modification of P3HT can promote separation of photogenerated electron–hole pairs on the TiO2 nanocrystalline thin film, which suppresses the recombination of photogenerated charge carriers, thus improving its photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. J.A. Chang, J.H. Rhee, H.I. Sang, H.L. Yong, H.J. Kim, I. S. Sang, M.K. Nazeeruddin, and M. Grätzel: High-performance nanostructured inorganic–organic heterojunction solar cells. Nano Lett. 10, 2609 (2010).

    Article  CAS  Google Scholar 

  2. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, and M. Antonietti: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76 (2009).

    Article  CAS  Google Scholar 

  3. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2015).

    Article  CAS  Google Scholar 

  4. V.O. Adesanya, M.P. Davey, S.A. Scott, and A.G. Smith: Water-assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity. Nanoscale 7, 2471 (2015).

    Article  Google Scholar 

  5. C.C. Chen, W.H. Ma, and J.C. Zhao: Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev. 39, 4206 (2010).

    Article  CAS  Google Scholar 

  6. G. Yang, Z. Jiang, H. Shi, T. Xiao, and Z. Yan: Preparation of highly visible-light active N-doped TiO2 photocatalyst. J. Mater. Chem. 20, 5301 (2010).

    Article  CAS  Google Scholar 

  7. M. Liu, L. Piao, L. Zhao, S. Ju, Z. Yan, T. He, C. Zhou, and W. Wang: Anatase TiO2 single crystals with exposed {001} and {110} facets: Facile synthesis and enhanced photocatalysis. Chem. Commun. 46, 1664 (2010).

    Article  CAS  Google Scholar 

  8. X. Chen, L. Liu, and F. Huang: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861 (2015).

    Article  CAS  Google Scholar 

  9. S. Cao, J. Low, J. Yu, and M. Jaroniec: Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150 (2015).

    Article  CAS  Google Scholar 

  10. A. Kudo and Y. Miseki: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009).

    Article  CAS  Google Scholar 

  11. X. Li, T. Xia, C. Xu, J. Murowchick, and X. Chen: Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. Catal. Today 225 (15), 64 (2014).

    Article  CAS  Google Scholar 

  12. L. Liu and X. Chen: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114 (19), 9890 (2014).

    Article  CAS  Google Scholar 

  13. J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, and Y. Xu: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).

    Article  CAS  Google Scholar 

  14. Z. He, L. Xie, S. Song, C. Wang, J. Tu, and F. Hong: The impact of silver modification on the catalytic activity of iodine-doped titania for p-chlorophenol degradation under visible-light irradiation. J. Mol. Catal. A: Chem. 319, 78 (2010).

    Article  CAS  Google Scholar 

  15. M. Liu, W. You, Z. Lei, G. Zhou, J. Yang, and G. Wu: Water reduction and oxidation on Pt–Ru/Y2Ta2O5N2 catalyst under visible light irradiation. Chem. Commun. 10, 2192 (2004).

    Article  Google Scholar 

  16. V. Rodríguez-González, R. Zanella, G.D. Angel, and R. Gómez: MTBE visible-light photocatalytic decomposition over Au/TiO2 and Au/TiO2–Al2O3 sol–gel prepared catalysts. J. Mol. Catal. A: Chem. 281, 93 (2008).

    Article  Google Scholar 

  17. J. Yu, J. Xiong, B. Cheng, and S. Liu: Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl. Catal., B 60, 211 (2005).

    Article  CAS  Google Scholar 

  18. P. Liu, W.Y. Li, J.B. Zhang, and Y. Lin: Photocatalytic activity enhancement of TiO2 porous thin film due to homogeneous surface modification of RuO2. J. Mater. Res. 26, 1532 (2010).

    Article  Google Scholar 

  19. P. Schilinsky, U. Asawapirom, U. Scherf, M. Biele, and C. Brabec: Influence of the molecular weight of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells. Chem. Mater. 17, 2175 (2005).

    Article  CAS  Google Scholar 

  20. A.M. Ballantyne, L. Chen, J. Dane, T.C. Hammant, F.X. Braun, M. Heeney, W. Duffy, I. McCuiioch, D.D.C. Bradley, and J. Nelson: The effect of poly(3-hexylthiophene) molecular weight on charge transport and the performance of polymer: Fullerene solar cells. Adv. Funct. Mater. 18, 2373 (2008).

    Article  CAS  Google Scholar 

  21. J.L. Zhang, S.Q. Cao, S.B. Xu, H.G. Yang, L. Yang, Y.Q. Song, L. Jiang, and Y. Dan: Study on stability of poly(3-hexylthiophene)/titanium dioxide composites as a visible light photocatalyst. Appl. Surf. Sci. 349, 650 (2015).

    Article  CAS  Google Scholar 

  22. J.L. Zhang, H.G. Yang, S.B. Xu, L. Yang, Y.Q. Song, L. Jiang, and Y. Dan: Dramatic enhancement of visible light photocatalysis due to strong interaction between TiO2 and end-group functionalized P3HT. Appl. Catal., B 174, 193 (2015).

    Google Scholar 

  23. S.B. Xu, L.X. Gu, K.H. Wu, H.G. Yang, Y.Q. Song, L. Jiang, and Y. Dan: The influence of the oxidation degree of poly(3-hexylthiophene) on the photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites. Sol. Energy Mater. Sol. Cells 96, 286 (2012).

    Article  CAS  Google Scholar 

  24. G.Z. Liao, S. Chen, X. Quan, H. Chen, and Y.B. Zhang: Photonic crystal coupled TiO2/polymer hybrid for efficient photocatalysis under visible light irradiation. Environ. Sci. Technol. 44, 3481 (2010).

    Article  CAS  Google Scholar 

  25. M. Al-Ibrahim, H.K. Rotha, U. Zhokhavetsb, G. Gobsch, and S. Sensfuss: Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene. Sol. Energy Mater. Sol. Cells 85, 13 (2005).

    Article  CAS  Google Scholar 

  26. Y. Zhu and Y. Dan: Photocatalytic activity of poly(3-hexylthiophene)/titanium dioxide composites for degrading methyl orange. Sol. Energy Mater. Sol. Cells 94, 1658 (2010).

    Article  CAS  Google Scholar 

  27. B. Muktha, D. Mahanta, S. Patil, and G. Madras: Synthesis and photocatalytic activity of poly(3-hexylthiophene)/TiO2 composites. J. Solid State Chem. 180, 2986 (2007).

    Article  CAS  Google Scholar 

  28. F.Y. Zhao, G.S. Tang, J.B. Zhang, and Y. Lin: Improved performance of CdSe quantum dot-sensitized TiO2 thin film by surface treatment with TiCl4. Electrochim. Acta 62, 396 (2012).

    Article  CAS  Google Scholar 

  29. Y. Kim, S. Cook, S. Tuladhar, S. Choulls, J. Nelson, J. Durrant, D. D.C. Bradley, M. Giles, I. Mcculloch, C.S. Ha, and M. Ree: A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: Fullerene solar cells. Nat. Mater. 5, 197 (2006).

    Article  CAS  Google Scholar 

  30. J. Zhang and A. Zaban: Efficiency enhancement in dye-sensitized solar cells by in situ passivation of the sensitized nanoporous electrode with Li2CO3. Electrochim. Acta 53, 5670 (2008).

    Article  CAS  Google Scholar 

  31. L. Jing, Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, F. Wei, H. Fu, and J. Sun: Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 90, 1773 (2006).

    Article  CAS  Google Scholar 

  32. K. Iijima, M. Goto, S. Enomoto, H. Kunugita, K. Ema, M. Tsukamoto, H. Sakama, and N. Ichikawa: Influence of oxygen vacancies on optical properties of anatase TiO2 thin films. J. Lumin. 128, 911 (2008).

    Article  CAS  Google Scholar 

  33. Y.Y. Lin, T.H. Chu, C.W. Chen, and W.F. Su: Improved performance of polymer/TiO2 nanorod bulk heterojunction photovoltaic devices by interface modification. Appl. Phys. Lett. 92, 053312 (2008).

    Article  Google Scholar 

  34. H. Yang, P. Li, J. B. Zhang, and Y. Lin: TiO2 compact layer for dye-sensitized SnO2 nanocrystalline thin film. Electrochim. Acta 147, 366 (2014).

    Article  CAS  Google Scholar 

  35. J. Bisquert, A. Zaban, M. Greenshtein, and I. Mora-Sero: Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J. Am. Chem. Soc. 126, 13550 (2004).

    Article  CAS  Google Scholar 

  36. M. Wang, L. Sun, Z. Lin, J. Cai, K. Xie, and C. Lin: p–n heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy Environ. Sci. 6, 1211 (2013).

    Article  CAS  Google Scholar 

  37. T. Kou, C. Jin, C. Zhang, J. Sun, and C. Zhang: Nanoporous core–shell Cu@Cu2O nanocomposites with superior photocatalytic properties towards the degradation of methyl orange. RSC Adv. 2, 12636 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Nature Science Foundation of China (Grant Nos 21273160 and 20873162), the Nature Science Foundation of Tianjin (Grant No. 14JCYBJC18000), and the Program for Innovative Research Team in University of Tianjin (TD12-5038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, J. Photocatalytic activity enhancement of TiO2 nanocrystalline thin film with surface modification of poly-3-hexylthiophene by in situ polymerization. Journal of Materials Research 31, 1448–1455 (2016). https://doi.org/10.1557/jmr.2016.124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.124

Navigation