Skip to main content
Log in

The influence of Mn on the microstructure and mechanical properties of the Al–5Mg–Mn alloy solidified under near-rapid cooling

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A research was carried out to investigate the microstructures and mechanical properties of high Mn containing Al–5Mg–Mn alloys cast under near-rapid cooling. The results indicated that the mechanical properties of the hot bands and cold rolled sheets were remarkably improved with Mn content increasing to 1.6 wt%. The near-rapid cooling process greatly refined the intermetallic constituents. The intermetallic Al6(Fe,Mn) particles found in the hot bands were rare and small when the content of Mn was hypoeutectic. In the samples with higher Fe and Si content, a large amount of Al6(Fe,Mn) and Mg2Si particles remained in the hot bands. But the hot bands still showed better mechanical properties due to the refinement of the intermetallic constituents by the near-rapid cooling process. The results were of commercial interest to the production of AA5083 alloy via continuous strip casting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. J.R. Davis: Alloying: Understanding the Basics (ASM International, Materials Park, 2001); p. 382.

    Book  Google Scholar 

  2. L. Backerud, E. Krol, and J. Tamminen: Solidification Characteristics of Aluminum Alloys (Skan Aluminium, Universitetsforlaget AS, Oslo, 1986); p. 119.

    Google Scholar 

  3. M. Bauccio: ASM Metals Reference Book, 3rd ed. (ASM international, Materials Park, 1999); pp. 405 and 415.

    Google Scholar 

  4. Y.L. Liu and S.B. Kang: Influence of Mn on microstructure and solidification behavior of aluminum–magnesium alloys. Mater. Sci. Technol. 12, 12 (1996).

    Article  CAS  Google Scholar 

  5. A. Sakthivel, R. Palaninathan, and R. Velmurugan: Production and mechanical properties of SiC particle-reinforced 2618 aluminum alloy composites. J. Mater. Sci. 43, 7047 (2008).

    Article  CAS  Google Scholar 

  6. K. Liu, X. Cao, and X.G. Chen: Tensile properties of Al–Cu 206 cast alloys with various Fe contents. Metall. Mater. Trans. A 45, 2498 (2014).

    Article  CAS  Google Scholar 

  7. R. Goswami, G. Spanos, P.S. Pao, and R.L. Holtz: Microstructural evolution and stress corrosion cracking behavior of Al-5083. Metall. Mater. Trans. A 42, 348 (2011).

    Article  CAS  Google Scholar 

  8. R. Goswami and R.L. Holtz: Transmission electron microscopic investigations of grain boundary beta phase precipitation in Al 5083 aged at 373 K (100 ºC). Metall. Mater. Trans. A 44, 1279 (2013).

    Article  CAS  Google Scholar 

  9. T.J. Harrell, T.D. Topping, H. Wen, T. Hu, J.M. Schoenung, and E.J. Lavernia: Microstructure and strengthening mechanisms in an ultrafine grained Al–Mg–Sc alloy produced by powder metallurgy. Metall. Mater. Trans. A 45, 6329 (2014).

    Article  CAS  Google Scholar 

  10. Y. Lin, W. Liu, L. Wang, and E.J. Lavernia: Ultra-fine grained structure in Al–Mg induced by discontinuous dynamic recrystallization under moderate straining. Mater. Sci. Eng., A 573, 197 (2013).

    Article  CAS  Google Scholar 

  11. R. Verma and S. Kim: Superplastic behavior of copper-modified 5083 aluminum alloy. J. Mater. Eng. Perform. 16, 185 (2007).

    Article  CAS  Google Scholar 

  12. A. Smolej, B. Skaza, and V. Dragojevic: Superplastic behavior of Al–4.5Mg–0.46Mn–0.44Sc alloy sheet produced by a conventional rolling process. J. Mater. Eng. Perform. 19, 221 (2010).

    Article  CAS  Google Scholar 

  13. R. Verma, P.A. Friedman, A.K. Ghosh, S. Kim, and C. Kim: Characterization of superplastic deformation behavior of a fine grain 5083 Al alloy sheet. Metall. Mater. Trans. A 27, 1889 (1996).

    Article  Google Scholar 

  14. D. Hyuk Shin, D-Y. Hwang, Y-J. Oh, and K-T. Park: High-strain-rate superplastic behavior of equal-channel angular-pressed 5083 Al–0.2 wt pct Sc. Metall. Mater. Trans. A 35, 825 (2004).

    Article  Google Scholar 

  15. D. Singh, P. Nageswara Rao, and R. Jayaganthan: Effect of deformation temperature on mechanical properties of ultrafine grained Al–Mg alloys processed by rolling. Mater. Des. 50, 646 (2013).

    Article  CAS  Google Scholar 

  16. M.T. Abdu, S.S. Dheda, E.J. Lavernia, T.D. Topping, and F.A. Mohamed: Creep and microstructure in ultrafine-grained 5083 Al. J. Mater. Sci. 48, 3294 (2013).

    Article  CAS  Google Scholar 

  17. T.D. Topping, B. Ahn, Y. Li, S.R. Nutt, and E.J. Lavernia: Influence of process parameters on the mechanical behavior of an ultrafine-grained Al alloy. Metall. Mater. Trans. A 43, 505 (2012).

    Article  CAS  Google Scholar 

  18. I. Roy, M. Chauhan, F.A. Mohamed, and E.J. Lavernia: Thermal stability in bulk cryomilled ultrafine-grained 5083 Al alloy. Metall. Mater. Trans. A 37, 721 (2006).

    Article  Google Scholar 

  19. D. Witkin, B.Q. Han, and E.J. Lavernia: Mechanical behavior of ultrafine-grained cryomilled Al 5083 at elevated temperature. J. Mater. Eng. Perform. 14, 519 (2005).

    Article  CAS  Google Scholar 

  20. S. Lin, Z. Nie, H. Huang, and B. Li: Annealing behavior of a modified 5083 aluminum alloy. Mater. Des. 31, 1607 (2010).

    Article  CAS  Google Scholar 

  21. Y. Dongxia, L. Xiaoyan, H. Dingyong, and H. Hui: Effect of minor Er and Zr on microstructure and mechanical properties of Al–Mg–Mn alloy (5083) welded joints. Mater. Sci. Eng., A 561, 226 (2013).

    Article  Google Scholar 

  22. S. Malopheyev, and R. Kaibyshev: Strengthening mechanisms in a Zr-modified 5083 alloy deformed to high strains. Mater. Sci. Eng., A 620, 246 (2015).

    Article  Google Scholar 

  23. C. Meng, D. Zhang, C. Hua, L. Zhuang, and J. Zhang: Mechanical properties, intergranular corrosion behavior and microstructure of Zn modified Al–Mg alloys. J. Alloys Compd. 617, 925 (2014).

    Article  CAS  Google Scholar 

  24. Y. Liu, M. Liu, L. Luo, J. Wang, and C. Liu: The solidification behavior of AA2618 aluminum alloy and the influence of cooling rate. Materials 7, 7875 (2014).

    Article  Google Scholar 

  25. S.L. Xia, M. Ma, J.X. Zhang, W.X. Wang, and W.C. Liu: Effect of heating rate on the microstructure, texture and tensile properties of continuous cast AA 5083 aluminum alloy. Mater. Sci. Eng., A 609, 168 (2014).

    Article  CAS  Google Scholar 

  26. M.A. García-Bernal, R.S. Mishra, R. Verma, and D. Hernández-Silva: Hot deformation behavior of friction-stir processed strip-cast 5083 aluminum alloys with different Mn contents. Mater. Sci. Eng., A 534, 186 (2012).

    Article  Google Scholar 

  27. S. Kumar, N. Hari Babu, G.M. Scamans, Z. Fan, and K.A.Q. O’Reilly: Twin roll casting of Al–Mg alloy with high added impurity content. Metall. Mater. Trans. A 45, 2842 (2014).

    Article  CAS  Google Scholar 

  28. W.C. Liu and J.G. Morris: Quantitative analysis of texture evolution in cold-rolled, continuous-cast AA 5xxx-series aluminum alloys. Metall. Mater. Trans. A 35, 265 (2004).

    Article  Google Scholar 

  29. Y.M. Zhao and J.G. Morris: Comparison of the texture evolution of direct chill and continuous cast AA5052 hot bands during isothermal annealing. Metall. Mater. Trans. A 36, 2505 (2005).

    Article  Google Scholar 

  30. R.E. Sanders, Jr.: Continuous casting for aluminum sheet: A product perspective. JOM 64, 291 (2012).

    Article  Google Scholar 

  31. Y. Liu, L. Luo, C. Han, J. Wang and C. Liu: The effect of Fe, Si and cooling rate on the solidification structures of Al–5Mg–0.8Mn alloy. J. Mater. Sci. Technol. 32, 305 (2016).

    Article  CAS  Google Scholar 

  32. Y. Liu, G. Huang, Y. Sun, L. Zhang, Z. Huang, J. Wang and C. Liu: Effect of Mn and Fe on the formation of Fe- and Mn-rich intermetallics in Al–5Mg–Mn alloys solidified under near-rapid cooling. Materials 9, 88 (2016).

    Article  Google Scholar 

  33. Y.L. Liu, L. Zhang, Y.H. Zhao, J.J. Wang, and C.Z. Liu: The Near-rapid Solidification Behavior of AA1070 Aluminum Alloy, Light Metals 2014, J. Grandfield, ed. (John Wiley & Sons, Inc.: Hoboken, 2014); pp. 981–986.

  34. E.L. Huskins, B. Cao, and K.T. Ramesh: Strengthening mechanisms in an Al–Mg alloy. Mater. Sci. Eng., A 527, 1292 (2010).

    Article  Google Scholar 

  35. Ø. Ryen, O. Nijs, E. Sjolander, B. Holmedal, H. Ekstrom, and E. Nes, Strengthening mechanisms in solid solution aluminum alloys. Metall. Mater. Trans. A 37, 1999 (2006).

    Article  Google Scholar 

  36. AA-TEAL-1-2006: International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys (The Aluminum Association Inc., Arlington, 2006).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Research Foundation of Shenyang Aerospace University for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ou, L., Han, C. et al. The influence of Mn on the microstructure and mechanical properties of the Al–5Mg–Mn alloy solidified under near-rapid cooling. Journal of Materials Research 31, 1153–1162 (2016). https://doi.org/10.1557/jmr.2016.119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.119

Navigation