Skip to main content
Log in

Selective removal of As, Sb, and Se ions from multicomponent mixture by nanoparticles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, the selective removal of ions from multicomponent mixtures using functionalized magnetic nanoparticles (FMNPs) was demonstrated. As, Sb, and Se ions were efficiently removed from complex mixtures, such as Rhodiola rosea extracts and influent water from the sewage treatment unit of a beer brewery. As, Sb, and Se ions could be selectively adsorbed by FMNP, as demonstrated by the inductively coupled plasma mass spectrometer analyses. We also demonstrated that Pb ions are weakly adsorbed, whereas Cu, Cd, and Zn ions cannot be adsorbed by FMNP. The complexity of the mixture did not affect the selective removal of As, Sb, and Se ions. FMNP could be recycled and used repeatedly. Magnetic separation could then be applied for the selective separation of complex mixtures, such as plant extracts, industrial wastewater, and tap water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. S.-H. Wang, S.-F. Wang, W. Xuan, Z.-H. Zeng, J.-Y. Jin, J. Ma, and G.R. Tian: Nitro as a novel zinc-binding group in the inhibition of carboxypeptidase A. Bioorg. Med. Chem. 16 (7), 3596 (2008).

    Article  CAS  Google Scholar 

  2. S. Lunge, S. Singh, and A. Sinha: Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J. Magn. Magn. Mater. 356, 21 (2014).

    Article  CAS  Google Scholar 

  3. C. Shan, Z. Ma, and M. Tong: Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles. J. Hazard. Mater. 268, 229 (2014).

    Article  CAS  Google Scholar 

  4. M. Khajeh, S. Laurent, and K. Dastafkan: Nanoadsorbents: Classification, preparation, and applications (with emphasis on aqueous media). Chem. Rev. 113 (10), 7728 (2013).

    Article  CAS  Google Scholar 

  5. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R.N. Muller: Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108 (6), 2064 (2008).

    Article  CAS  Google Scholar 

  6. Y. Huang and A.A. Keller: Magnetic nanoparticle adsorbents for emerging organic contaminants. ACS Sustainable Chem. Eng. 1 (7), 731 (2013).

    Article  CAS  Google Scholar 

  7. A. Malekpour and M. Khodadadi: Albumin-functionalized magnetic nanoparticles as an efficient sorbent for removal of Pb(II), Cd(II), Cu(II) and Cr(VI) ions from aqueous solutions. RSC Adv. 6, 14705 (2016).

    Article  CAS  Google Scholar 

  8. J. Shi, H. Li, H. Lu, and X. Zhao: Use of carboxyl functional magnetite nanoparticles as potential sorbents for the removal of heavy metal ions from aqueous solution. J. Chem. Eng. Data 60 (7), 2035 (2015).

    Article  CAS  Google Scholar 

  9. W. Yantasee, C.L. Warner, T. Sangvanich, R.S. Addleman, T.G. Carter, R.J. Wiacek, G.E. Fryxell, C. Timchalk, and M.G. Warner: Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ. Sci. Technol. 41 (14), 5114 (2007).

    Article  CAS  Google Scholar 

  10. I. Ali: New generation adsorbents for water treatment. Chem. Rev. 112 (10), 5073 (2012).

    Article  CAS  Google Scholar 

  11. L.H. Reddy, J.L. Arias, J. Nicolas, and P. Couvreur: Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112 (11), 5818 (2012).

    Article  CAS  Google Scholar 

  12. S.R. Chowdhury, E.K. Yanful, and A.R. Pratt: Arsenic removal from aqueous solutions by mixed magnetite–maghemite nanoparticles. Environ. Earth Sci. 64 (2), 411 (2011).

    Article  CAS  Google Scholar 

  13. J. Hu, G. Chen, and I.M.C. Lo: Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res. 39 (18), 4528 (2005).

    Article  CAS  Google Scholar 

  14. J. Hu, G. Chen, and I. Lo: Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: Performance and mechanisms. J. Environ. Eng. 132 (7), 709 (2006).

    Article  CAS  Google Scholar 

  15. J.-F. Liu, Z.-S. Zhao, and G.-B. Jiang: Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 42 (18), 6949 (2008).

    Article  CAS  Google Scholar 

  16. X. Liu, Q. Hu, Z. Fang, X. Zhang, and B. Zhang: Magnetic chitosan nanocomposites: A useful recyclable tool for heavy metal ion removal. Langmuir 25 (1), 3 (2009).

    Article  CAS  Google Scholar 

  17. G. Giakisikli and A.N. Anthemidis: Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review. Anal. Chim. Acta 789, 1 (2013).

    Article  CAS  Google Scholar 

  18. A.-H. Lu, E.L. Salabas, and F. Schüth: Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 46 (8), 1222 (2007).

    Article  CAS  Google Scholar 

  19. X. Xin, Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen, B. Du, and H. Li: Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe3O4 nanoparticles. Chem. Eng. J. 184, 132 (2012).

    Article  CAS  Google Scholar 

  20. Y. Tan, M. Chen, and Y. Hao: High efficient removal of Pb(II) by amino-functionalized Fe3O4 magnetic nanoparticles. Chem. Eng. J. 191, 104 (2012).

    Article  CAS  Google Scholar 

  21. Y.-M. Hao, C. Man, and Z.-B. Hu: Effective removal of Cu(II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J. Hazard. Mater. 184 (1–3), 392 (2010).

    Article  CAS  Google Scholar 

  22. A. Panossian, G. Wikman, and J. Sarris: Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine. 17 (7), 481 (2010).

    Article  CAS  Google Scholar 

  23. W. Liao, Y.-X. Gan, S.-L. Zhao, N.-N. Luo, N. Rahmadini, F. Giannotta, C.-M. Fu, L. Rui, and J.-S. Wang: Comparative analysis of trace elements contained in Rhizoma curcumae from different origins and their vinegar products by ICP-MS. Anal. Methods 6 (20), 8187 (2014).

    Article  CAS  Google Scholar 

  24. S.-H. Wang and J.-D. Zhang: The comparation and determination of inorganic elements in Rhodiola angusta Nakai. Yanbian Daxue Xuebao, Ziran Kexueban 39 (2), 125 (2013).

    Google Scholar 

  25. L. Wang, J. Bao, L. Wang, F. Zhang, and Y. Li: One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chem.–Eur. J. 12 (24), 6341 (2006).

    Article  CAS  Google Scholar 

  26. J. Wang, G. Zhao, Y. Li, H. Zhu, X. Peng, and X. Gao: One-step fabrication of functionalized magnetic adsorbents with large surface area and their adsorption for dye and heavy metal ions. Dalton Trans. 43 (30), 11637 (2014).

    Article  CAS  Google Scholar 

  27. L. Feng, M. Cao, X. Ma, Y. Zhu, and C. Hu: Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J. Hazard. Mater. 217–218, 439 (2012).

    Article  Google Scholar 

  28. P. Stathi, K. Litina, D. Gournis, T.S. Giannopoulos, and Y. Deligiannakis: Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation. J. Colloid Interface Sci. 316 (2), 298 (2007).

    Article  CAS  Google Scholar 

  29. X. Yu, X. Tian, and S. Wang: Adsorption of Ni, Pd, Pt, Cu, Ag and Au on the Fe3O4(111) surface. Surf. Sci. 628, 141 (2014).

    Article  CAS  Google Scholar 

  30. H. Li, D.-l. Xiao, H. He, R. Lin and P.-l. Zuo: Adsorption behavior and adsorption mechanism of Cu(II) ions on amino-functionalized magnetic nanoparticles. Trans. Nonferrous Met. Soc. China 23 (9), 2657 (2013).

    Article  CAS  Google Scholar 

  31. M. Gavrilescu: Removal of heavy metals from the environment by biosorption. Eng. Life Sci. 4 (3), 219 (2004).

    Article  CAS  Google Scholar 

  32. F. Zhang, Z. Zhu, Z. Dong, Z. Cui, H. Wang, W. Hu, P. Zhao, P. Wang, S. Wei, R. Li, and J. Ma: Magnetically recoverable facile nanomaterials: Synthesis, characterization and application in remediation of heavy metals. Microchem. J. 98 (2), 328 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The National Natural Science Foundation of China (No. 21365023, for S.H. Wang and No. 21265023, for D.H. Li) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si-Hong Wang or Dong-Hao Li.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SH., Zhang, JD., Piao, JS. et al. Selective removal of As, Sb, and Se ions from multicomponent mixture by nanoparticles. Journal of Materials Research 31, 1012–1017 (2016). https://doi.org/10.1557/jmr.2016.115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.115

Navigation