Skip to main content
Log in

Effect of Gd addition on the wear behavior of Mg–x Gd–3Y–0.5Zr alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of different Gd additions on wear behavior of the T6 heat treated Mg–x Gd–3Y–0.5Zr alloys were investigated. The wear tests were carried out using a Ball-on-flat type wear apparatus against an AISI 52100 type bearing steel ball counterface in the load range of 3–15 N, sliding speed range of 0.03–0.18 m/s, temperature range of 25–200 °C and at a constant sliding distance of 400 m. The results showed that the wear rate of the tested alloys increased with increasing sliding load. By increasing the wear temperature to 200 °C, the wear rate of the Mg–6Gd–3Y–0.5Zr alloy decreased by about 24%. At higher wear speeds, wear resistance of the alloys increased due to the formation of stable oxide layers on the worn surfaces. The alloy containing 12 wt% Gd exhibited higher wear resistance compared with the alloys containing lower Gd contents under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14

Similar content being viewed by others

References

  1. K.U. Kainer: Magnesium Alloys and Technology (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003).

    Book  Google Scholar 

  2. S. Schumann and H. Friedrich: Current and future use of magnesium in the automobile industry. Mater. Sci. Forum 419, 51 (2003).

    Article  Google Scholar 

  3. G.L. Song and D. St John: The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ. J. Light Met. 2, 1 (2002).

    Article  Google Scholar 

  4. H.R. Jafari Nodooshan, W.C. Liu, G.H. Wu, Y. Rao, C.X. Zhou, S.P. He, W.J. Ding, and R. Mahmudi: Effect of Gd content on microstructure and mechanical properties of Mg–Gd–Y–Zr alloys under peak-aged condition. Mater. Sci. Eng., A 615, 79 (2014).

    Article  Google Scholar 

  5. C.J. Ma, M.Q. Liu, G.H. Wu, W.J. Ding, and Y.P. Zhu: Tensile properties of extruded ZK60–RE alloys. Mater. Sci. Eng., A 349, 207 (2003).

    Article  Google Scholar 

  6. Y.X. Hua, S.K. Guan, X.Q. Zeng, and W.J. Ding: Effects of RE on the microstructure and mechanical properties of Mg–8Zn–4Al magnesium alloy. Mater. Sci. Eng., A 416, 109 (2006).

    Article  Google Scholar 

  7. J.L. Li, R.S. Chen, Y.Q. Ma, and W. Ke: Effect of Zr modification on solidification behavior and mechanical properties of Mg–Y–RE (WE54) alloy. J. Magnesium Alloys 1, 346 (2013).

    Article  CAS  Google Scholar 

  8. H.H. Zou, X.Q. Zeng, C.Q. Zhai, and W.J. Ding: The effects of yttrium element on microstructure and mechanical properties of Mg–5 wt% Zn–2 wt% Al alloy. Mater. Sci. Eng., A 402, 142 (2005).

    Article  Google Scholar 

  9. B.L. Morike: Creep-resistant magnesium alloys. Mater. Sci. Eng., A 324, 103 (2002).

    Article  Google Scholar 

  10. H.R. Jafari Nodooshan, W.C. Liu, G.H. Wu, R. Alizadeh, R. Mahmudi, and W.J. Ding: Microstructure characterization and high-temperature shear strength of the Mg–10Gd–3Y–1.2Zn–0.5Zr alloy in the as-cast and aged conditions. J. Alloys Compd. 619, 826 (2015).

    Article  CAS  Google Scholar 

  11. R. Alizadeh, R. Mahmudi, A.W.H. Ngan, and T.G. Langdon: Microstructural stability and grain growth kinetics in an extruded fine-grained Mg–Gd–Y–Zr alloy. J. Mater. Sci. 50, 4940 (2015).

    Article  CAS  Google Scholar 

  12. S. Anbu selvan and S. Ramanathan: A comparative study of the wear behavior of as-cast and hot extruded ZE41A magnesium alloy. J. Alloys Compd. 502, 495 (2010).

    Article  CAS  Google Scholar 

  13. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding: Precipitation in a Mg–10Gd–3Y–0.4Zr (wt%) alloy during isothermal ageing at 250 °C. J. Alloys Compd. 421, 309 (2006).

    Article  CAS  Google Scholar 

  14. J. Wang, J. Meng, D. Zhang, and D. Tang: Effect of Y for enhanced age hardening response and mechanical properties of Mg–Gd–Y–Zr alloys. Mater. Sci. Eng., A 456, 78 (2007).

    Article  Google Scholar 

  15. H. Chen and A.T. Alpas: Sliding wear map for the magnesium alloy Mg–9Al–0.9 Zn (AZ91). Wear 246, 106 (2000).

    Article  CAS  Google Scholar 

  16. C.Y.H. Lim, S.C. Lim, and M. Gupta: Wear behaviour of SiCp-reinforced magnesium matrix composites. Wear 255, 629 (2003).

    Article  CAS  Google Scholar 

  17. A. Zafari, H.M. Ghasemi, and R. Mahmudi: An investigation on the tribological behavior of AZ91 and AZ91 + 3 wt% RE magnesium alloys at elevated temperatures. Mater. Des. 54, 544 (2014).

    Article  CAS  Google Scholar 

  18. M.L. Hu, Q.D. Wang, C.J. Chen, D.D. Yin, W.J. Ding, and Z.S. Ji: Dry sliding wear behaviour of Mg–10Gd–3Y–0.4Zr alloy. Mater. Des. 42, 223 (2012).

    Article  CAS  Google Scholar 

  19. S.M. He: Study on the microstructural evolution, properties and fracture behavior of Mg–Gd–Y–Zr(–Ca) alloys. Shanghai Jiao Tong University for Ph. D. Degree, 2007. (In Chinese).

  20. ASTM G133-02: Standard TST Method for Linearly Reciprocating Ball-on-flat Sliding Wear (ASTM, West Conshohocken, 2002).

    Google Scholar 

  21. J. Archard: Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981 (1953).

    Article  Google Scholar 

  22. N. Soltani, H.R. Jafari Nodooshan, A. Bahrami, M.I. Pech-Canul, W.C. Liu, and G.H. Wu: Effect of hot extrusion on wear properties of Al–15 wt% Mg2Si in situ metal matrix composites. Mater. Des. 53, 774 (2014).

    Article  CAS  Google Scholar 

  23. H.R. Jafari Nodooshan, W. Liu, G. Wu, A. Bahrami, M.I. Pech-Canul, and M. Emamy: Mechanical and tribological characterization of Al–Mg2Si composites after yttrium addition and heat treatment. J. Mater. Eng. Perform. 23, 1146 (2014).

    Article  CAS  Google Scholar 

  24. R. Deaquino-Lara, N. Soltani, A. Bahrami, E. Gutiérrez-Castañeda, E. García-Sánchez, and M.A.L. Hernandez-Rodríguez: Tribological characterization of Al7075–graphite composites fabricated by mechanical alloying and hot extrusion. Mater. Des. 67, 224 (2015).

    Article  CAS  Google Scholar 

  25. J.F. Nie: Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 48, 1009 (2003).

    Article  CAS  Google Scholar 

  26. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding: Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. J. Alloys Compd. 427, 316 (2007).

    Article  CAS  Google Scholar 

  27. N.N. Aung, W. Zhou, and L.E.N. Lim: Wear behaviour of AZ91D alloy at low sliding speeds. Wear 265, 780 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project is sponsored by National Natural Science Foundation of China (No. 51275295), Shanghai Rising-Star Program (No. 14QB1403200) and Research Fund for the Doctoral Program of Higher Education of China (Nos. 20120073120011 and 20130073110052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari Nodooshan, H.R., Liu, W., Wu, G. et al. Effect of Gd addition on the wear behavior of Mg–x Gd–3Y–0.5Zr alloys. Journal of Materials Research 31, 1133–1144 (2016). https://doi.org/10.1557/jmr.2016.113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.113

Navigation