Skip to main content
Log in

Microstructure and texture evolution of novel Cu–10Ni–3Al–0.8Si alloy during hot deformation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The influence of temperature and strain rate on hot deformation behavior and microstructure of Cu–10Ni–3Al–0.8Si alloy was investigated. The true stress increased rapidly initially until it approached the peak values. The peak value of true stress and the Zener–Hollomon parameter decreased with the increase of temperature and the decrease of strain rate. The thermal activation energy of the alloy was about 396.57 kJ/mol, the processing map was established and the appropriate compression temperature was between 900 and 950 °C. The 〈001〉 and 〈011〉 fiber texture was the main type of texture. The increase of temperature or strain rate accelerated the formation of 〈001〉 fiber texture. Dynamic recrystallization nucleated and deformation bands formed at 750 °C. Recrystallization was accelerated with the increase of temperature and the decrease of Zener–Hollomon parameter. Both continuous recrystallization resulting from dynamic recovery and dynamic discontinuous recrystallization were softening mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. T. Hasegawa, Y. Takagawa, C. Watanabe, and R. Monzen: Deformation of Cu–Be–Co alloys by aging at 593 K. Mater. Trans. 52, 1685 (2011).

    Article  CAS  Google Scholar 

  2. G-L. Xie, Q-S. Wang, X-J. Mi, B-Q. Xiong, and L-J. Peng: The precipitation behavior and strengthening of a Cu–2.0 wt% Be alloy. Mater. Sci. Eng., A, 558, 326 (2012).

    Article  CAS  Google Scholar 

  3. Z. Henmi and T. Nagai: Mechanism of precipitation hardening in Cu–Be alloys. Trans. Jpn. Inst. Met. 10, 166 (1969).

    Article  CAS  Google Scholar 

  4. L-N. Shen, Z. Li, Q-Y. Dong, Z. Xiao, M-Y. Wang, P-H. He, and Q. Lei: Dry wear behavior of ultra-high strength Cu–10Ni–3Al–0.8 Si alloy. Tribol. Int. 92, 544 (2015).

    Article  CAS  Google Scholar 

  5. L-N. Shen, Z. Li, Q-Y. Dong, Z. Xiao, S. Li, and Q. Lei: Microstructure evolution and quench sensitivity of Cu–10Ni–3Al–0.8Si alloy during isothermal treatment. J. Mater. Res. 30, 736 (2015).

    Article  CAS  Google Scholar 

  6. S-I. Oh, S-L. Semiatin, and J-J. Jonas: An analysis of the isothermal hot compression test. Metall. Trans. A 23, 963 (1992).

    Article  Google Scholar 

  7. R-A. Petkovic, M-J. Luton, and J-J. Jonas: Recovery and recrystallization of polycrystalline copper after hot working. Acta Metall. 27, 1633 (1979).

    Article  CAS  Google Scholar 

  8. Y. Deng, Z-M. Yin, and J. Huang: Hot deformation behavior and microstructural evolution of homogenized 7050 aluminum alloy during compression at elevated temperature. Mater. Sci. Eng., A 528, 1780 (2011).

    Article  Google Scholar 

  9. Q. Lei, Z. Li, J. Wang, S. Li, L. Zhang, and Q-Y. Dong: High-temperature deformation behavior of Cu–6.0Ni–1.0Si–0.5Al–0.15Mg–0.1Cr alloy. J. Mater. Sci. 47, 6034 (2012).

    Article  CAS  Google Scholar 

  10. D-C. Drucker: Coulomb friction, plasticity, and limit loads, Brown univ. providence ri. div. of applied mathematics, 1953.

  11. R. Ebrahimi and A. Najafizadeh: A new method for evaluation of friction in bulk metal forming. J. Mater. Process. Technol. 152, 136 (2004).

    Article  CAS  Google Scholar 

  12. B. Avitzur: Metal Forming, Processes and Analysis (McGraw-Hill, New York, 1968); pp. 102.

    Google Scholar 

  13. P. Wanjara, M. Jahazi, H. Monajati, S. Yue, and J-P. Immarigeon: Hot working behavior of near-α alloy IMI834. Mater. Sci. Eng., A 396, 50 (2005).

    Article  Google Scholar 

  14. L. Zhang, Z. Li, Q. Lei, W-T. Qiu, and H-T. Luo: Hot deformation behavior of Cu–8.0 Ni–1.8 Si–0.15 Mg alloy. Mater. Sci. Eng., A 528, 1641 (2011).

    Article  Google Scholar 

  15. Y. Prasad, H-L. Gegel, S-M. Doraivelu, J-C. Malas, J-T. Morgan, K-A. Lark, and D-R. Barker: Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metall. Trans. A 15, 1883 (1984).

    Article  Google Scholar 

  16. S. Anbuselvan and S. Ramanathan: Hot deformation and processing maps of extruded ZE41A magnesium alloy. Mater. Des. 31, 2319 (2010).

    Article  CAS  Google Scholar 

  17. T. Baudin, A-L. Etter, and R. Penelle: Annealing twin formation and recrystallization study of cold-drawn copper wires from EBSD measurements. Mater. Charact. 58, 947 (2007).

    Article  CAS  Google Scholar 

  18. Y-H. Zhao, Y-T. Zhu, X-Z. Liao, Z. Horita, and T-G. Langdon: Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy. Appl. Phys. Lett. 89, 121906 (2006).

    Article  Google Scholar 

  19. J-Q. Su, T-W. Nelson, R. Mishra, and M. Mahoney: Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Mater. 51, 713 (2003).

    Article  CAS  Google Scholar 

  20. S. Gourdet and F. Montheillet: An experimental study of the recrystallization mechanism during hot deformation of aluminium. Mater. Sci. Eng., A 283, 274 (2000).

    Article  Google Scholar 

  21. Q. Lei, Z. Li, J. Wang, J-M. Xie, X. Chen, S. Li, Y. Gao, and L. Li: Hot working behavior of a super high strength Cu–Ni–Si alloy. Mater. Des. 51, 1104 (2013).

    Article  CAS  Google Scholar 

  22. Y-S. Li, Y. Zhang, N-R. Tao, and K. Lu: Effect of the Zener–Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation. Acta Mater. 57, 761 (2003).

    Article  Google Scholar 

  23. M. Jafari and A. Najafizadeh: Correlation between Zener–Hollomon parameter and necklace DRX during hot deformation of 316 stainless steel. Mater. Sci. Eng., A 501, 16 (2009).

    Article  Google Scholar 

  24. J-C. Tan and M-J. Tan: Dynamic continuous recrystallization characteristics in two stage deformation of Mg–3Al–1Zn alloy sheet. Mater. Sci. Eng., A 339, 124 (2003).

    Article  Google Scholar 

  25. S. Gourdet and F. Montheillet: A model of continuous dynamic recrystallization. Acta Mater. 51, 2685 (2003).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Grants from the Project of Innovation-driven Plan in Central South University, the National Natural Science Foundation of China (51271203), the Open-End Fund for the Valuable and Precision Instruments of Central South University (CSUZC201522), the Aid program for Science and Technology Innovative Research Teams in Higher Educational Institutions of Hunan Province, and the State Key Laboratory of Powder Metallurgy of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Li, Z., Dong, Q. et al. Microstructure and texture evolution of novel Cu–10Ni–3Al–0.8Si alloy during hot deformation. Journal of Materials Research 31, 1113–1123 (2016). https://doi.org/10.1557/jmr.2016.104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.104

Navigation