Skip to main content

Advertisement

Log in

Room temperature stress relaxation in nanocrystalline Ni measured by micropillar compression and miniature tension

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, we report a micropillar stress relaxation technique employing a stable displacement-controlled, in-situ scanning electron microscope indenter, and unusually large micropillars to precisely measure stress relaxation in electroplated nanocrystalline Ni thin films. The observed stress relaxation is significant under constant displacement: even well below the 0.2% offset yield strength, the stresses relax by ∼4% within a minute; in the work hardening regime, stress relaxes by ∼9% in 1 min. A logarithmic fit of the relaxation curves is consistent with an Arrhenius thermal activation of plasticity and suggests an activation volume in the vicinity of ∼10 b3. The apparent and effective activation volumes diverge at lower strains, particularly in the “elastic” regime. These measurements are compared to similar measurements performed on free-standing thin film tensile coupons. Both methods yield similar results, thereby validating the applicability of pillar compression to capture time-dependent plasticity. To our knowledge, these are the first micropillar stress relaxation experiments on metals ever reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. N. Wang, Z. Wang, K. Aust, and U. Erb: Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique. Mater. Sci. Eng., A 237 (2), 150 (1997).

    Article  Google Scholar 

  2. F.A. Mohamed and Y. Li: Creep and superplasticity in nanocrystalline materials: Current understanding and future prospects. Mater. Sci. Eng., A 298 (1), 1 (2001).

    Article  Google Scholar 

  3. W. Yin, S. Whang, R. Mirshams, and C. Xiao: Creep behavior of nanocrystalline nickel at 290 and 373 K. Mater. Sci. Eng., A 301 (1), 18 (2001).

    Article  Google Scholar 

  4. W.M. Yin and S.H. Whang: Creep in boron-doped nanocrystalline nickel. Scr. Mater. 44 (4), 569 (2001).

    Article  CAS  Google Scholar 

  5. B. Cai, Q. Kong, L. Lu, and K. Lu: Low temperature creep of nanocrystalline pure copper. Mater. Sci. Eng., A 286 (1), 188 (2000).

    Article  Google Scholar 

  6. Q. Wei, S. Cheng, K. Ramesh, and E. Ma: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng., A 381 (1), 71 (2004).

    Article  CAS  Google Scholar 

  7. J. May, H.W. Höppel, and M. Göken: Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scr. Mater. 53 (2), 189 (2005).

    Article  CAS  Google Scholar 

  8. Y.M. Wang and E. Ma: Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater. Sci. Eng., A 375–377, 46 (2004).

    Article  CAS  Google Scholar 

  9. Y. Wang, A. Hamza, and E. Ma: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54 (10), 2715 (2006).

    Article  CAS  Google Scholar 

  10. Y. Li, J. Mueller, H. Höppel, M. Göken, and W. Blum: Deformation kinetics of nanocrystalline nickel. Acta Mater. 55 (17), 5708 (2007).

    Article  CAS  Google Scholar 

  11. Y. Wang, A. Hamza, and E. Ma: Activation volume and density of mobile dislocations in plastically deforming nanocrystalline Ni. Appl. Phys. Lett. 86 (24), 241917 (2005).

    Article  CAS  Google Scholar 

  12. L. Lu, T. Zhu, Y. Shen, M. Dao, K. Lu, and S. Suresh: Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper. Acta Mater. 57 (17), 5165 (2009).

    Article  CAS  Google Scholar 

  13. A. Cottrell and R. Stokes: Effects of temperature on the plastic properties of aluminium crystals. Proc. R. Soc. London, Ser. A 233 (1192), 17 (1955).

    Article  CAS  Google Scholar 

  14. W. Bochniak: The Cottrell-Stokes law for FCC single crystals. Acta Metall. Mater. 41 (11), 3133 (1993).

    Article  CAS  Google Scholar 

  15. D. Caillard and J-L. Martin: Thermally Activated Mechanisms in Crystal Plasticity (Elsevier, Oxford, 2003).

    Google Scholar 

  16. C. Wang, M. Zhang, and T. Nieh: Nanoindentation creep of nanocrystalline nickel at elevated temperatures. J. Phys. D: Appl. Phys. 42, 115405 (2009).

    Article  CAS  Google Scholar 

  17. S.A.S. Asif and J. Pethica: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76 (6), 1105 (1997).

    Article  CAS  Google Scholar 

  18. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51 (17), 5159 (2003).

    Article  CAS  Google Scholar 

  19. V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, and M. Göken: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26 (11), 1421 (2011).

    Article  CAS  Google Scholar 

  20. J.M. Wheeler, V. Maier, K. Durst, M. Göken, and J. Michler: Activation parameters for deformation of ultrafine-grained aluminium as determined by indentation strain rate jumps at elevated temperature. Mater. Sci. Eng., A 585, 108 (2013).

    Article  CAS  Google Scholar 

  21. R. Goodall and T. Clyne: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54 (20), 5489 (2006).

    Article  CAS  Google Scholar 

  22. K.I. Schiffmann: Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models. Z. Metallkd. 97 (9), 1199 (2006).

    CAS  Google Scholar 

  23. M.D. Uchic and D.M. Dimiduk: A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater. Sci. Eng., A 400, 268 (2005).

    Article  CAS  Google Scholar 

  24. M.D. Uchic, P.A. Shade, and D.M. Dimiduk: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).

    Article  CAS  Google Scholar 

  25. C. Wang, Y. Lai, J. Huang, and T. Nieh: Creep of nanocrystalline nickel: A direct comparison between uniaxial and nanoindentation creep. Scr. Mater. 62 (4), 175 (2010).

    Article  CAS  Google Scholar 

  26. S. Özerinç, R.S. Averback, and W.P. King: In situ creep measurements on micropillar samples during heavy ion irradiation. J. Nucl. Mater. 451 (1), 104 (2014).

    Article  CAS  Google Scholar 

  27. G. Mohanty, J.M. Wheeler, R. Raghavan, J. Wehrs, M. Hasegawa, S. Mischler, L. Philippe, and J. Michler: Elevated temperature, strain rate jump microcompression of nanocrystalline nickel. Philos. Mag. 95, 1878–1895 (2014).

    Article  CAS  Google Scholar 

  28. J. Wehrs, G. Mohanty, G. Guillonneau, A.A. Taylor, X. Maeder, D. Frey, L. Philippe, S. Mischler, J.M. Wheeler, and J. Michler: Comparison of in situ micromechanical strain-rate sensitivity measurement techniques. JOM 67, 1684–1693 (2015).

    Article  CAS  Google Scholar 

  29. I-K. Lin, Y-M. Liao, K-S. Chen, and X. Zhang: Viscoelastic characterization of soft micropillars for cellular mechanics study. In 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences (Royal Society of Chemistry, San Diego, 2008).

    Google Scholar 

  30. V. Dotsenko: Stress relaxation in crystals. Phys. Status Solidi B 93 (1), 11 (1979).

    Article  CAS  Google Scholar 

  31. F. Guiu and P. Pratt: Stress relaxation and the plastic deformation of solids. Phys. Status Solidi B 6 (1), 111 (1964).

    Article  Google Scholar 

  32. H. Van Swygenhoven, P. Derlet, and A. Frøseth: Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Mater. 54 (7), 1975 (2006).

    Article  CAS  Google Scholar 

  33. E. Bitzek, P. Derlet, P. Anderson, and H. Van Swygenhoven: The stress–strain response of nanocrystalline metals: A statistical analysis of atomistic simulations. Acta Mater. 56 (17), 4846 (2008).

    Article  CAS  Google Scholar 

  34. S. Brandstetter, Ž. Budrović, S. Van Petegem, B. Schmitt, E. Stergar, P. Derlet, and H. Van Swygenhoven: Temperature-dependent residual broadening of x-ray diffraction spectra in nanocrystalline plasticity. Appl. Phys. Lett. 87 (23), 231910 (2005).

    Article  CAS  Google Scholar 

  35. D. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K. Hemker: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54 (8), 2253 (2006).

    Article  CAS  Google Scholar 

  36. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51 (4), 427 (2006).

    Article  CAS  Google Scholar 

  37. P. Spätig, J. Bonneville, and J-L. Martin: A new method for activation volume measurements: Application to Ni3(Al, Hf). Mater. Sci. Eng., A 167 (1), 73 (1993).

    Article  Google Scholar 

  38. V. Saile: LIGA and Its Applications, Volker Saile, Ulrike Wallrabe, Osamu Tabata, Jan G. Korvink, eds. (John Wiley & Sons, Weinheim, 2009).

    Google Scholar 

  39. L. Giannuzzi and F. Stevie: A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30 (3), 197 (1999).

    Article  Google Scholar 

  40. L. Philippe, P. Schwaller, G. Bürki, and J. Michler: A comparison of microtensile and microcompression methods for studying plastic properties of nanocrystalline electrodeposited nickel at different length scales. J. Mater. Res. 23 (05), 1383 (2008).

    Article  CAS  Google Scholar 

  41. J.M. Wheeler and J. Michler: Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev. Sci. Instrum. 84 (4), 045103 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Funding by Strength-ABLE (EMPIR 14IND03), an EURAMET joint research project funded by the European Community’s Seventh Framework Programme, ERA-NET Plus, under Grant Agreement No. 217257 is gratefully acknowledged. Gaurav Mohanty, Aidan Taylor and Madoka Hasegawa would like to acknowledge funding from EMPA Postdoc program cofunded by FP7: Marie Curie Actions. BLB was funded by The United States Department of Energy, office of Basic Energy Science (BES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Mohanty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, G., Wehrs, J., Boyce, B.L. et al. Room temperature stress relaxation in nanocrystalline Ni measured by micropillar compression and miniature tension. Journal of Materials Research 31, 1085–1095 (2016). https://doi.org/10.1557/jmr.2016.101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.101

Navigation