Abstract
In this study, we report a micropillar stress relaxation technique employing a stable displacement-controlled, in-situ scanning electron microscope indenter, and unusually large micropillars to precisely measure stress relaxation in electroplated nanocrystalline Ni thin films. The observed stress relaxation is significant under constant displacement: even well below the 0.2% offset yield strength, the stresses relax by ∼4% within a minute; in the work hardening regime, stress relaxes by ∼9% in 1 min. A logarithmic fit of the relaxation curves is consistent with an Arrhenius thermal activation of plasticity and suggests an activation volume in the vicinity of ∼10 b3. The apparent and effective activation volumes diverge at lower strains, particularly in the “elastic” regime. These measurements are compared to similar measurements performed on free-standing thin film tensile coupons. Both methods yield similar results, thereby validating the applicability of pillar compression to capture time-dependent plasticity. To our knowledge, these are the first micropillar stress relaxation experiments on metals ever reported.
Similar content being viewed by others
References
N. Wang, Z. Wang, K. Aust, and U. Erb: Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique. Mater. Sci. Eng., A 237 (2), 150 (1997).
F.A. Mohamed and Y. Li: Creep and superplasticity in nanocrystalline materials: Current understanding and future prospects. Mater. Sci. Eng., A 298 (1), 1 (2001).
W. Yin, S. Whang, R. Mirshams, and C. Xiao: Creep behavior of nanocrystalline nickel at 290 and 373 K. Mater. Sci. Eng., A 301 (1), 18 (2001).
W.M. Yin and S.H. Whang: Creep in boron-doped nanocrystalline nickel. Scr. Mater. 44 (4), 569 (2001).
B. Cai, Q. Kong, L. Lu, and K. Lu: Low temperature creep of nanocrystalline pure copper. Mater. Sci. Eng., A 286 (1), 188 (2000).
Q. Wei, S. Cheng, K. Ramesh, and E. Ma: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng., A 381 (1), 71 (2004).
J. May, H.W. Höppel, and M. Göken: Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scr. Mater. 53 (2), 189 (2005).
Y.M. Wang and E. Ma: Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater. Sci. Eng., A 375–377, 46 (2004).
Y. Wang, A. Hamza, and E. Ma: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54 (10), 2715 (2006).
Y. Li, J. Mueller, H. Höppel, M. Göken, and W. Blum: Deformation kinetics of nanocrystalline nickel. Acta Mater. 55 (17), 5708 (2007).
Y. Wang, A. Hamza, and E. Ma: Activation volume and density of mobile dislocations in plastically deforming nanocrystalline Ni. Appl. Phys. Lett. 86 (24), 241917 (2005).
L. Lu, T. Zhu, Y. Shen, M. Dao, K. Lu, and S. Suresh: Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper. Acta Mater. 57 (17), 5165 (2009).
A. Cottrell and R. Stokes: Effects of temperature on the plastic properties of aluminium crystals. Proc. R. Soc. London, Ser. A 233 (1192), 17 (1955).
W. Bochniak: The Cottrell-Stokes law for FCC single crystals. Acta Metall. Mater. 41 (11), 3133 (1993).
D. Caillard and J-L. Martin: Thermally Activated Mechanisms in Crystal Plasticity (Elsevier, Oxford, 2003).
C. Wang, M. Zhang, and T. Nieh: Nanoindentation creep of nanocrystalline nickel at elevated temperatures. J. Phys. D: Appl. Phys. 42, 115405 (2009).
S.A.S. Asif and J. Pethica: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76 (6), 1105 (1997).
R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51 (17), 5159 (2003).
V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, and M. Göken: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26 (11), 1421 (2011).
J.M. Wheeler, V. Maier, K. Durst, M. Göken, and J. Michler: Activation parameters for deformation of ultrafine-grained aluminium as determined by indentation strain rate jumps at elevated temperature. Mater. Sci. Eng., A 585, 108 (2013).
R. Goodall and T. Clyne: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54 (20), 5489 (2006).
K.I. Schiffmann: Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models. Z. Metallkd. 97 (9), 1199 (2006).
M.D. Uchic and D.M. Dimiduk: A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater. Sci. Eng., A 400, 268 (2005).
M.D. Uchic, P.A. Shade, and D.M. Dimiduk: Plasticity of micrometer-scale single crystals in compression. Annu. Rev. Mater. Res. 39, 361 (2009).
C. Wang, Y. Lai, J. Huang, and T. Nieh: Creep of nanocrystalline nickel: A direct comparison between uniaxial and nanoindentation creep. Scr. Mater. 62 (4), 175 (2010).
S. Özerinç, R.S. Averback, and W.P. King: In situ creep measurements on micropillar samples during heavy ion irradiation. J. Nucl. Mater. 451 (1), 104 (2014).
G. Mohanty, J.M. Wheeler, R. Raghavan, J. Wehrs, M. Hasegawa, S. Mischler, L. Philippe, and J. Michler: Elevated temperature, strain rate jump microcompression of nanocrystalline nickel. Philos. Mag. 95, 1878–1895 (2014).
J. Wehrs, G. Mohanty, G. Guillonneau, A.A. Taylor, X. Maeder, D. Frey, L. Philippe, S. Mischler, J.M. Wheeler, and J. Michler: Comparison of in situ micromechanical strain-rate sensitivity measurement techniques. JOM 67, 1684–1693 (2015).
I-K. Lin, Y-M. Liao, K-S. Chen, and X. Zhang: Viscoelastic characterization of soft micropillars for cellular mechanics study. In 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences (Royal Society of Chemistry, San Diego, 2008).
V. Dotsenko: Stress relaxation in crystals. Phys. Status Solidi B 93 (1), 11 (1979).
F. Guiu and P. Pratt: Stress relaxation and the plastic deformation of solids. Phys. Status Solidi B 6 (1), 111 (1964).
H. Van Swygenhoven, P. Derlet, and A. Frøseth: Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Mater. 54 (7), 1975 (2006).
E. Bitzek, P. Derlet, P. Anderson, and H. Van Swygenhoven: The stress–strain response of nanocrystalline metals: A statistical analysis of atomistic simulations. Acta Mater. 56 (17), 4846 (2008).
S. Brandstetter, Ž. Budrović, S. Van Petegem, B. Schmitt, E. Stergar, P. Derlet, and H. Van Swygenhoven: Temperature-dependent residual broadening of x-ray diffraction spectra in nanocrystalline plasticity. Appl. Phys. Lett. 87 (23), 231910 (2005).
D. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K. Hemker: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54 (8), 2253 (2006).
M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51 (4), 427 (2006).
P. Spätig, J. Bonneville, and J-L. Martin: A new method for activation volume measurements: Application to Ni3(Al, Hf). Mater. Sci. Eng., A 167 (1), 73 (1993).
V. Saile: LIGA and Its Applications, Volker Saile, Ulrike Wallrabe, Osamu Tabata, Jan G. Korvink, eds. (John Wiley & Sons, Weinheim, 2009).
L. Giannuzzi and F. Stevie: A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30 (3), 197 (1999).
L. Philippe, P. Schwaller, G. Bürki, and J. Michler: A comparison of microtensile and microcompression methods for studying plastic properties of nanocrystalline electrodeposited nickel at different length scales. J. Mater. Res. 23 (05), 1383 (2008).
J.M. Wheeler and J. Michler: Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Rev. Sci. Instrum. 84 (4), 045103 (2013).
ACKNOWLEDGMENTS
Funding by Strength-ABLE (EMPIR 14IND03), an EURAMET joint research project funded by the European Community’s Seventh Framework Programme, ERA-NET Plus, under Grant Agreement No. 217257 is gratefully acknowledged. Gaurav Mohanty, Aidan Taylor and Madoka Hasegawa would like to acknowledge funding from EMPA Postdoc program cofunded by FP7: Marie Curie Actions. BLB was funded by The United States Department of Energy, office of Basic Energy Science (BES).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mohanty, G., Wehrs, J., Boyce, B.L. et al. Room temperature stress relaxation in nanocrystalline Ni measured by micropillar compression and miniature tension. Journal of Materials Research 31, 1085–1095 (2016). https://doi.org/10.1557/jmr.2016.101
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2016.101