Skip to main content
Log in

Mechanism of hot ductility loss in C–Mn steels based on nonequilibrium grain boundary segregation of impurities

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The subject of hot ductility in C–Mn steels has been the focus of interest for a long time in materials science and engineering. However, the mechanism of loss in hot ductility continues to be unclear. In the present paper, the experimental hot ductility data in C–Mn steels involve: (i) a ductility trough appears at a certain temperature when the sample is held for a certain time at various temperatures after cooling quickly from a higher temperature; (ii) the ductility healing phenomenon which occurs with the duration of holding time; (iii) the ductility deteriorates with the increase of temperature difference between solution treatment temperature and test temperature during a tensile test; (iv) a minimum ductility appears when samples are cooled from a higher temperature to a lower one at a certain cooling rate; and (v) the formation of cavities at grain boundaries during tests. All of these are analyzed and calculated from the perspective of thermally induced nonequilibrium grain-boundary segregation (TNGS). Based on our detailed analyses, the loss in hot ductility of C–Mn steels is ascribed to TNGS of impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

Similar content being viewed by others

REFERENCES

  1. W.T. Lankford: Some considerations of strength and ductility in the continuous-casting. Metall. Trans. 3 (6), 1331 (1972).

    Article  CAS  Google Scholar 

  2. H.G. Suzuki, S. Nishimura, and S. Yamagnchi: Characteristics of hot ductility in steels subjected to the melting and solidification. Trans. Iron Steel Inst. Jpn. 22, 48 (1982).

    Article  Google Scholar 

  3. B. Mintz, S. Yue, and J.J. Jonas: Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting. Int. Mater. Rev. 36, 187 (1991).

    Article  CAS  Google Scholar 

  4. B. Mintz: The influence of composition on the hot ductility of steels and to the problem of transverse cracking. ISIJ Int. 39, 833 (1999).

    Article  CAS  Google Scholar 

  5. C. Nagasaki, A. Aizawa, and J. Kihara: Influence of manganese and sulfur on hot ductility of carbon steels at high strain rate. Trans. Iron Steel Inst. Jpn. 27, 506 (1987).

    Article  CAS  Google Scholar 

  6. C.M. Liu, K. Abiko, and M. Tanino: Relation between the intergranular segregation of S and the hot ductility in high purity Fe-S alloys. Acta Metall. Sin. (Engl. Lett.) 12, 637 (1999).

    CAS  Google Scholar 

  7. D. Sun, T. Yamane, and K. Hirao: Intermediate-temperature brittleness of a ferritic 17Cr stainless steel. J. Mater. Sci. 26, 5767 (1991).

    Article  CAS  Google Scholar 

  8. H. Matsuoka, K. Osawa, M. Ono, and M. Ohmura: Influence of Cu and Sn on hot ductility of steels with various C content. ISIJ Int. 37, 255 (1997).

    Article  CAS  Google Scholar 

  9. T.D. Xu and S.H. Song: A kinetic model of non-equilibrium grain-boundary segregation. Acta Metall. 37 (9), 2499 (1989).

    Article  CAS  Google Scholar 

  10. T.D. Xu and B.Y. Cheng: Kinetics of non-equilibrium grain-boundary segregation. Prog. Mater. Sci. 49, 109 (2004).

    Article  CAS  Google Scholar 

  11. T.D. Xu, L. Zheng, K. Wang, and R.D.K. Misra: Unified mechanism of intergranular embrittlement based on non-equilibrium grain boundary segregation. Int. Mater. Rev. 58 (5), 263 (2013).

    Article  CAS  Google Scholar 

  12. T.M. Williams, A.M. Stoneham, and D.R. Harries: The segregation of boron to grain boundaries in solution-treated Type 316 austenitic stainless steel. Met. Sci. 10 (1), 14 (1976).

    Article  CAS  Google Scholar 

  13. R.G. Faulkner: Non-equilibrium grain-boundary segregation in austenitic alloys. J. Mater. Sci. 16, 373–383 (1981).

    Article  CAS  Google Scholar 

  14. P. Doig and P.E.J. Flewitt: Segregation of chromium to prior austenite boundaries during quenching of a 2.25 %Crl%Mo steel. Acta Mater. 29 (11), 1831 (1981).

    Article  CAS  Google Scholar 

  15. R.G. Faulkner: Combined grain boundary equilibrium and non-equilibrium segregation in ferritic/martensitic steels. Acta Metall. 35 (12), 2905 (1987).

    Article  CAS  Google Scholar 

  16. T.D. Xu, S.H. Song, H.Z. Shi, W. Gust, and Z.X. Yuan: A method of determining the diffusion coefficient of vacancy-solute atom complexes during the segregation to grain boundaries. Acta Metall. Mater. 39 (12), 3119 (1991).

    Article  CAS  Google Scholar 

  17. T.D. Xu: The critical time and critical cooling rate of non-equilibrium grain-boundary segregations. J. Mater. Sci. Lett. 7 (3), 241 (1988).

    Article  CAS  Google Scholar 

  18. T.D. Xu: Non-equilibrium cosegregation to grain boundaries. Scr. Mater. 37 (11), 1643 (1997).

    Article  Google Scholar 

  19. Q.F. Li, S.L. Yang, L. Li, L. Zheng, and T.D. Xu: Experimental study on non-equilibrium grain-boundary segregation kinetics of phosphorus in an industrial steel. Scr. Mater. 47 (6), 389 (2002).

    Article  CAS  Google Scholar 

  20. Z.L. Zhang, Q.Y. Lin, and Z.S. Yu: Grain boundary segregation in ultra-low carbon steel. Mater. Sci. Eng., A 291 (1–2), 22 (2000).

    Article  Google Scholar 

  21. K. Wang, H. Si, C. Yang, and T.D. Xu: Nonequilibrium grain boundary segregation of phosphorus in Ni-Cr-Fe superalloy. J. Iron Steel Res. Int. 18 (1), 61 (2011).

    Article  Google Scholar 

  22. T.D. Xu: Critical time for Mg grain-boundary segregation in Ni–Cr–Co alloy. Philos. Mag. Lett. 86 (8), 501 (2006).

    Article  CAS  Google Scholar 

  23. T.D. Xu: Non-equilibrium grain-boundary segregation kinetics. J. Mater. Sci. 22 (1), 337 (1987).

    Article  CAS  Google Scholar 

  24. K. Wang, M.Q. Wang, H. Si, and T.D. Xu: Critical time for non-equilibrium grain boundary segregation of phosphorus in 304L stainless steel. Mater. Sci. Eng., A 485 (1–2), 347 (2008).

    Article  CAS  Google Scholar 

  25. C.L. Briant: Grain boundary segregation of phosphorus in 304L stainless steel. Metall. Trans. A 16 (11), 2061 (1985).

    Article  Google Scholar 

  26. C.L. Briant: Grain boundary segregation of phosphorus and sulfur in types 304L and 316L stainless steel and its effects on intergranular corrosion in the huey test. Metall. Trans. A 18 (5), 691 (1987).

    Article  Google Scholar 

  27. K. Wang, T.D. Xu, S.H. Song, and C. Shao: Intermediate-temperature embrittlement induced by non-equilibrium grain-boundary segregation of sulfur in Ni–Cr–Fe alloy. Mater. Charact. 62 (6), 575 (2011).

    Article  CAS  Google Scholar 

  28. K. Wang, T.D. Xu, Y.Q. Wang, and J.H. Du: Intermediate-temperature embrittlement induced by non-equilibrium grain-boundary segregation of sulfur in Ni–Cr–Fe alloy. Philos. Mag. Lett. 89 (11), 725 (2009).

    Article  CAS  Google Scholar 

  29. T. Kizu and T. Urabe: Hot ductility of sulfur-containing low manganese mild steels at high strain rate. ISIJ Int. 49, 1424 (2009).

    Article  CAS  Google Scholar 

  30. L. Karlsson, H. Norden, and H. Odelius: Overview no. 63 Non-equilibrium grain boundary segregation of boron in austenitic stainless steel—I. Large scale segregation behavior. Acta Metall. 36 (1), 1 (1988).

    Article  CAS  Google Scholar 

  31. Z.X. Yuan, J. Jia, A.M. Guo, D.D. Shen, and S.H. Song: Experimental study on non-equilibrium grain-boundary segregation kinetics of phosphorus in an industrial steel. Scr. Mater. 48 (2), 203 (2003).

    Article  CAS  Google Scholar 

  32. S.H. Song, Z.X. Yuan, J. Jia, A.M. Guo, and D.D. Shen: The role of tin in the hot-ductility deterioration of a low-carbon steel. Metall. Mater. Trans. A 34 (8), 1611 (2003).

    Article  Google Scholar 

  33. Z.X. Yuan, J. Jia, A.M. Guo, D.D. Shen, S.H. Song, and J. Liu: Influence of tin on the hot ductility of a low-carbon steel. Acta Metall. Sin. (Engl. Lett.) 16 (6), 478 (2003).

    CAS  Google Scholar 

  34. E. El-Kashif, K. Asakura, and K. Shibata: Effect of cooling rate after recrystallization on P and B segregation along grain boundary in IF steels. ISIJ Int. 43 (12), 2007 (2003).

    Article  CAS  Google Scholar 

  35. R.G. Faulkner: Impurity diffusion constants and vacancy–impurity binding energies in solids. Mater. Sci. Technol. 1 (6), 442 (1985).

    Article  CAS  Google Scholar 

  36. V. Vorlick and P.E.J. Flewitt: Cooling induced segregation of impurity elements to grain boundaries in Fe-3 wt%Ni alloys, 2.25Cr-1Mo steel and submerged arc weld metal. Acta Metall. Mater. 42 (10), 3309 (1994).

    Article  Google Scholar 

  37. S.H. Song and T.D. Xu: Combined equilibrium and non-equilibrium segregation mechanism of temper embrittlement. J. Mater. Sci. 29 (1), 61 (1994).

    Article  CAS  Google Scholar 

  38. W.F. Galeand and T.C. Totemeier: Smithells Metals Reference Book, 8th ed. (Elsevier Butterworth-Heinemann, Burlington, MI, 2004).

    Google Scholar 

  39. T. Kizu, Y. Nagakati, T. Inazumi, and Y. Hosoya: Intergranular and internal oxidation during hot-rolling process in ultra-low carbon steel. ISIJ Int. 42 (2), 206 (2002).

    Article  CAS  Google Scholar 

  40. Z.L. Zhang, Q.Y. Lin, and Z.S. Yu: Non-equilibrium intergranular segregation in ultra low carbon steel. Mater. Sci. Technol. 16 (3), 305 (2000).

    Article  Google Scholar 

  41. J. Calvo, J.M. Cabrera, A. Rezaeian, and S. Yue: Evaluation of the hot ductility of a C–Mn steel produced from scrap recycling. ISIJ Int. 47, 1518 (2007).

    Article  CAS  Google Scholar 

  42. K. Yasumoto, Y. Maehara, S. Ura, and Y. Ohmori: Effects of sulphur on hot ductility of low-carbon steel austenite. Mater. Sci. Technol. 1, 111 (1985).

    Article  CAS  Google Scholar 

  43. H. Kobayashi: Hot-ductility recovery by manganese sulphide precipitation in low manganese mild steel. ISIJ Int. 31, 268 (1991).

    Article  CAS  Google Scholar 

  44. D. Mclean: Grain Boundaries in Metals (Oxford University Press, Oxford, UK, 1957).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the National Nature Science Foundation of China (Grant No. 51171050). R.D.K. Misra acknowledges support from Center for Structural and Functional Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongwen Zheng.

Additional information

Contributing Editor: Jürgen Eckert

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Yu, H., Liu, Z. et al. Mechanism of hot ductility loss in C–Mn steels based on nonequilibrium grain boundary segregation of impurities. Journal of Materials Research 30, 1701–1714 (2015). https://doi.org/10.1557/jmr.2015.93

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.93

Navigation