Skip to main content
Log in

Recrystallization and cube texture formation in heavily cold-rolled Ni7W alloy substrates for coated conductors

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The formation of deformation and recrystallization textures has been investigated in a Ni7W alloy after heavy cold rolling and subsequent annealing at different temperatures. Cold rolling to a von Mises strain of 4.17 produced a mix of rolling texture that lies between classical brass- and copper-type rolling textures, with the fraction of S({123}<634>), brass({110}<112>), and copper({112}<111>) orientations being 33, 28, and 13%, respectively. The fraction of rolling texture for the deformed Ni7W alloy samples increased slightly during recovery, was then consumed significantly during recrystallization, and dropped to 22% after being annealed at 800 °C for 1 h. The fraction of cube({001}<100>) orientation increased to 26% after primary recrystallization, whereas other random orientations of 43% formed in the Ni7W alloy samples. Further annealing promoted cube grain growth, which lead to a significant strengthening of the cube texture and to a significant loss in high angle boundary (HAB). The fractions of cube texture and HAB of the Ni7W alloy substrate were 92.1 and 27.8%, respectively, after annealing at 1200 °C for 1 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

REFERENCES

  1. A. Goyal, D.F. Lee, F.A. List, E.D. Specht, R. Feenstra, M. Paranthaman, X. Cui, S.W. Lu, P.M. Martin, D.M. Kroeger, D.K. Christen, B.W. Kang, D.P. Norton, C. Park, D.T. Verebelyi, J.R. Thompson, R.K. Williams, T. Aytug, and C. Cantoni: Recent progress in the fabrication of high-Jc tapes by epitaxial deposition of YBCO on RABiTS. Phys. C 357, 903 (2001).

    Article  Google Scholar 

  2. A. Goyal, D.P. Nortoa, D.M. Kroeger, D.K. Christen, M. Paranthaman, E.D. Specht, J.D. Budai, Q. He, B. Saffian, F.A. List, D.F. Lee, E. Hatfield, P.M. Martin, C.E. Klabunde, J. Mathis, and C. Parka: Conductors with controlled grain boundaries: An approach to the next generation, high temperature superconducting wire. J. Mater. Res. 12, 2924 (1997).

    Article  CAS  Google Scholar 

  3. A.O. Ijaduola, J.R. Thompson, A. Goyal, C.L.H. Thieme, and K. Markend: Magnetism and ferromagnetic loss in Ni–W textured substrates for coated conductors. Phys. C 403, 163 (2004).

    Article  CAS  Google Scholar 

  4. A. Goyal, R. Feenstra, F.A. List, M. Paranthaman, D.F. Lee, D.M. Kroeger, D.B. Beach, J.S. Morrell, T.G. Chirayil, D.T. Verebelyi, X. Cui, E.D. Specht, D.K. Christen, and P.M. Martin: Using RABiTS to fabricate high-temperature superconducting wire. JOM 51, 19 (1999).

    Article  CAS  Google Scholar 

  5. M.W. Rupich, U. Schoop, D.T. Verebelyi, C. Thieme, W. Zhang, X. Li, T. Kodenkandath, N. Nguyen, E. Siegal, D. Buczek, J. Lynch, M. Jowett, E. Thompson, J. S. Wang, J. Scudiere, A.P. Malozemoff, Q. Li, S. Annavarapu, S. Cui, L. Fritzemeier, B. Aldrich, C. Craven, F. Niu, R. Schwall, A. Goyal, and M. Paranthaman: YBCO coated conductors by an MOD/RABiTS™ process. IEEE Trans. Appl. Supercond. 13, 2458 (2003).

    Article  CAS  Google Scholar 

  6. S. Sathyamurthy, M. Paranthaman, H.Y. Zhai, S. Kang, T. Aytug, C. Cantoni, K.J. Leonard, E.A. Payzant, H.M. Christen, A. Goyal, X. Li, U. Schoop, T. Kodenkandath, and M.W. Rupich: Chemical solution deposition of lanthanum zirconate barrier layers applied to low-cost coated-conductor fabrication. J. Mater. Res. 19, 2117 (2004).

    Article  CAS  Google Scholar 

  7. W. Zhang, M.W. Rupich, U. Schoop, D.T. Verebelyi, C.L.H. Thieme, X. Li, T. Kodenkandath, Y. Huang, E. Siegal, D. Buczek, W. Carter, N. Nguyen, J. Schreiber, M. Prasova, J. Lynch, D. Tucker, and S. Fleshler: Progress in AMSC scale-up of second generation HTS wire. Phys. C 463–465, 505 (2007).

    Article  Google Scholar 

  8. J. Eickemeyer, D. Selbmann, R. Optiz, E. Maher, and W. Prusseit: Effect of nickel purity on cube texture formation in RABiT-tapes. Phys. C 2425–2426, 341 (2000).

    Google Scholar 

  9. Y.X. Zhou, S.V. Ghalsasi, M. Hanna, Z.J. Tang, R.L. Meng, and K. Salama: Fabrication of cube-textured Ni-9% at W substrate for YBCO superconducting wires using powder metallurgy. IEEE Trans. Appl. Supercond. 17, 3428 (2007).

    Article  CAS  Google Scholar 

  10. H.L. Suo, M.M. Gao, Y. Zhao, Y.H. Zhu, P.K. Gao, J.H. Wang, M. Liu, L. Ma, and Y. Ji: Development of advanced substrates for HTS coated conductors. IEEE Trans. Appl. Supercond. 20, 1569 (2010).

    Article  CAS  Google Scholar 

  11. A. Goyal, R. Feenstra, M. Paranthaman, J.R. Thompson, B.Y. Kang, C. Cantoni, D.F. Lee, F.A. List, P.M. Martin, E. Lara-Curzio, C. Stevens, D.M. Kroeger, M. Kowalewski, E.D. Specht, T. Aytug, S. Sathyamurthy, R.K. Williams, and R.E. Ericson: Strengthened, biaxially textured Ni substrate with small alloying additions for coated conductor applications. Phys. C 382, 251 (2002).

    Article  CAS  Google Scholar 

  12. M.M. Gao, H.L. Suo, J. Grivel, Y. Zhao, P.K. Gao, M. Liu, and L. Ma: Fabrication of the textured Ni-9.3 at.% W alloy substrate for coated conductors. IEEE Trans. Appl. Supercond. 21, 2969 (2011).

    Article  CAS  Google Scholar 

  13. J. Eickemeyer, R. Hühne, A. Güth, C. Rodig, H. Klauß, and B. Holzapfel: Textured Ni–7.5 at.% W substrate tapes for YBCO-coated conductors. Supercond. Sci. Technol. 21, 105012 (2008).

    Article  Google Scholar 

  14. J. Eickemeyer, R. Hühne, A. Güth, C. Rodig, U. Gaitzsch, J. Freudenberger, L. Schultz, and B. Holzapfel: Textured Ni–9.0 at.% W substrate tapes for YBCO-coated conductors. Supercond. Sci. Technol. 23, 085012 (2010).

    Article  Google Scholar 

  15. S.R. Kalidindi: Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals. Int. J. Plast. 17, 837 (2001).

    Article  CAS  Google Scholar 

  16. V. Subramanya Sarma, J. Eickemeyer, L. Schultz, and B. Holzapfel: Recrystallisation texture and magnetisation behaviour of some FCC Ni–W alloys. Scr. Mater. 50, 953 (2004).

    Article  CAS  Google Scholar 

  17. T. Leffers and R.K. Ray: The brass-type texture and its deviation from the copper-type texture. Prog. Mater. Sci. 54 (3), 351 (2009).

    Article  CAS  Google Scholar 

  18. I.V. Gervasyeva, D.P. Rodionov, B.K. Sokolov, and Yu.V. Khlebnikova: Effect of deformation texture component composition on cube texture formation during primary recrystallization in Ni-based alloys. Mater. Sci. Forum 495–497, 1213 (2005).

    Article  Google Scholar 

  19. V. Subramanya Sarma, J. Eickemeyer, C. Mickel, L. Schultz, and B. Holzapfel: On the cold rolling textures in some fcc Ni–W alloys. Mater. Sci. Eng., A 380, 30 (2004).

    Article  Google Scholar 

  20. H. Tian, H.L. Suo, H.Q. Qiu, L. Ma, M. Liu, L.M. Wang, D.M. Wang, and Y.X. Wang: Investigation of cold rolling texture and recrystallization texture in NiW substrates. Rare Met. Mater. Eng. 40, 329 (2001).

    Google Scholar 

  21. H. Tian, H.L. Suo, O.V. Mishin, Y.B. Zhang, D. Juul Jensen, and J-C. Grivel: Annealing behaviour of a nanostructured Cu–45 at.% Ni alloy. J. Mater. Sci. 48, 4183 (2013).

    Article  CAS  Google Scholar 

  22. G.H. Zahid, Y. Huang, and P.B. Prangnell: Microstructure and texture evolution during annealing a cryogenic-SPD processed Al-alloy with a nanoscale lamellar HAGB grain structure. Acta Mater. 57, 3509 (2009).

    Article  CAS  Google Scholar 

  23. P.P. Bhattacharjee, R.K. Ray, and N. Tsuji: Evolution of deformation and recrystallization textures in high-purity Ni and the Ni-5at.% W alloy. Metall. Mater. Trans. A 41, 2856 (2010).

    Article  Google Scholar 

  24. Y.B. Zhang, A. Godfrey, Q. Liu, W. Liu, and D. Juul Jensen: Analysis of the growth of individual grains during recrystallization in pure nickel. Acta Mater. 57, 2631 (2009).

    Article  CAS  Google Scholar 

  25. Y.X. Wang, H.L. Suo, L. Ma, D.M. Wang, and J.H. Wang: Formation of cube texture in Ni5W alloy substrates by melting route. Rare Met. Mater. Eng. 42, 1611 (2013).

    CAS  Google Scholar 

  26. O.V. Mishi and G. Gottstein: Grain boundary ensembles due to grain growth in copper with strong recrystallization texture. Mater. Sci. Eng., A 249, 71 (1998).

    Article  Google Scholar 

  27. A.C. Wulff, O.V. Mishin, and J-C. Grivel: Evolution of microstructure, texture and topography during additional annealing of cube-textured Ni–5at.%W substrate for coated conductors. J. Alloys Compd. 539, 161 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support from the National Science Foundation of China (51171002), Beijing Municipal Natural Science Foundations (2132011 and KZ201310005003), the Doctoral Program of Higher Education of Special Research Fund (20121103110012), the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality (IDHT20130510), as well as the Project supported by the Beijing Postdoctoral Research Foundation (Q6009001201402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongli Suo.

Additional information

Contributing Editor: Jürgen Eckert

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Tian, H., Suo, H. et al. Recrystallization and cube texture formation in heavily cold-rolled Ni7W alloy substrates for coated conductors. Journal of Materials Research 30, 1686–1692 (2015). https://doi.org/10.1557/jmr.2015.92

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.92

Navigation