Skip to main content
Log in

A novel method for determining surface residual stress components and their directions in spherical indentation

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, a novel method is proposed to determine surface residual stress components and their directions based on the spherical indentation. To obtain the direction and the components of a uniaxial or biaxial residual stress, the relationship between the pile-up deformation around an indentation after unloading and the residual stress was firstly systematically studied and established by using numerical simulation. Through theoretical analysis and numerical simulation, we found that the position of the maximum residual stress is dependent on the maximum pile-up around an indentation after unloading. The direction and components of residual stress can be correctly determined by the unique relationship between pile-up after unloading and biaxial residual stress. This conclusion has been verified by the experiment results in the residual stress measurements of a welded specimen with spherical indentation and x-ray diffraction methods. Meanwhile, the influences of friction between the object surface and the indenter, the material hardening exponent of the specimen, and the elastic deformation upon the residual stress are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15

Similar content being viewed by others

References

  1. R. Arsenault and M. Taya: Thermal residual stress in metal matrix composite. Acta Metall. 35(3), 651 (1987).

    Article  CAS  Google Scholar 

  2. P. Dong and F.W. Brust: Welding residual stresses and effects on fracture in pressure vessel and piping components: A millennium review and beyond. J. Pressure Vessel Technol. 122(3), 329 (2000).

    Article  CAS  Google Scholar 

  3. Y.I. Golovin: Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films: A review. Phys. Solid State 50(12), 2205 (2008).

    Article  CAS  Google Scholar 

  4. E. Hu, Y. He, and Y. Chen: Experimental study on the surface stress measurement with Rayleigh wave detection technique. Appl. Acoust. 70(2), 356 (2009).

    Article  Google Scholar 

  5. J. Gauthier, T.W. Krause, and D.L. Atherton: Measurement of residual stress in steel using the magnetic Barkhausen noise technique. NDT&E Int. 31(1), 23 (1998).

    Article  CAS  Google Scholar 

  6. R. Gou, Y. Zhang, X. Xu, L. Sun, and Y. Yang: Residual stress measurement of new and in-service X70 pipelines by X-ray diffraction method. NDT&E Int. 44(5), 387 (2011).

    Article  CAS  Google Scholar 

  7. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 601 (1986).

    Article  Google Scholar 

  8. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).

    Article  CAS  Google Scholar 

  9. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49(19), 3899 (2001).

    Article  CAS  Google Scholar 

  10. J-I. Jang, Y. Choi, J-S. Lee, Y-H. Lee, D. Kwon, M. Gao, and R. Kania: Application of instrumented indentation technique for enhanced fitness-for-service assessment of pipeline crack. Int. J. Fract. 131(1), 15 (2005).

    Article  Google Scholar 

  11. J.S. Field and M.V. Swain: Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10(1), 101 (1995).

    Article  CAS  Google Scholar 

  12. M.V. Swain: Mechanical property characterisation of small volumes of brittle materials with spherical tipped indenters. Mater. Sci. Eng., A 253(1), 160 (1998).

    Article  Google Scholar 

  13. A.J. Bushby and D.J. Dunstan: Plasticity size effects in nanoindentation. J. Mater. Res. 19(1), 137 (2004).

    Article  CAS  Google Scholar 

  14. T.T. Zhu, A.J. Bushby, and D.J. Dunstan: Size effect in the initiation of plasticity for ceramics in nanoindentation. J. Mech. Phys. Solids 56(4), 1170 (2008).

    Article  CAS  Google Scholar 

  15. S. Suresh and A.E. Giannakopoulos: A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 46(16), 5755 (1998).

    Article  CAS  Google Scholar 

  16. Y-T. Cheng and C-M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44(4), 91 (2004).

    Article  Google Scholar 

  17. T.Y. Tsui, W.C. Oliver, and G.M. Pharr: Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. J. Mater. Res. 11(3), 752 (1996).

    Article  CAS  Google Scholar 

  18. A.C. Fischer-Cripps: A simple phenomenological approach to nanoindentation creep. Mater. Sci. Eng., A 385(1), 74 (2004).

    Article  Google Scholar 

  19. A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, and Y-L. Shen: Indentation across size scales and disciplines: Recent developments in experimentation and modeling. Acta Mater. 55(12), 4015 (2007).

    Article  CAS  Google Scholar 

  20. S.H. Kim, B.W. Lee, Y. Choi, and D. Kwon: Quantitative determination of contact depth during spherical indentation of metallic materials—A FEM study. Mater. Sci. Eng., A 415(1), 59 (2006).

    Article  Google Scholar 

  21. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 (2004).

    Article  CAS  Google Scholar 

  22. X. Chen, J. Yan, and A.M. Karlsson: On the determination of residual stress and mechanical properties by indentation. Mater. Sci. Eng., A 416(1), 139 (2006).

    Article  Google Scholar 

  23. Y-H. Lee and D. Kwon: Estimation of biaxial surface stress by instrumented indentation with sharp indenters. Acta Mater. 52(6), 1555 (2004).

    Article  CAS  Google Scholar 

  24. Y-H. Lee, K. Takashima, Y. Higo, and D. Kwon: Prediction of stress directionality from pile-up morphology around remnant indentation. Scr. Mater. 51(9), 887 (2004).

    Article  CAS  Google Scholar 

  25. D.I. Kwon, J.S. Lee, J.H. Han, G.J. Lee, Y.H. Lee, M.J. Choi, and K.H. Kim: Residual stress estimation with identification of stress directionality using instrumented indentation technique. Key Eng. Mater. 345, 1125 (2007).

    Google Scholar 

  26. A. Bolshakov and G.M. Pharr: Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 13(4), 1049 (1998).

    Article  CAS  Google Scholar 

  27. J.H. Underwood: Residual-stress measurement using surface displacements around an indentation. Exp. Mech. 13(9), 373 (1973).

    Article  Google Scholar 

  28. Y.M. He, C.J. Tay, and H.M. Shang: Digital phase-shifting shearography for slope measurement. Opt. Eng. 38(9), 1586 (1999).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the NSFC (Nos. 11272131, 11472114), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20110142110039), and the Fundamental Research Funds for the Central Universities, HUST: No. 2013KXYQ008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., He, Y., Liu, D. et al. A novel method for determining surface residual stress components and their directions in spherical indentation. Journal of Materials Research 30, 1078–1089 (2015). https://doi.org/10.1557/jmr.2015.87

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.87

Navigation