Skip to main content
Log in

Flow behavior and processing map of forging commercial purity titanium powder compact

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The flow behavior of forged commercial purity (CP) titanium powder compact was studied by developing a processing map. CP titanium powder was sintered to 94% relative density, then hot compressed in a Gleeble thermal–mechanical simulator at strain rates ranging from 0.001 to 10 s−1 and deformation temperatures ranging from 600 to 800 °C. The hot forging process improved the densification to 98–99.9% and reduced the grain size from 93 to 10 µm by the occurrence of dynamic recrystallization. The fully dynamic recrystallization region is in the range of deformation temperature of 750–800 °C and strain rate of 0.001–0.01 s−1, with a power dissipation efficiency higher than 40%, determined by constructing a processing map and analyzing the volume fraction of dynamic recrystallization. This research provides a guide for powder compact forging of power metallurgy titanium by providing the hot compression parameters, which can lead to an improved microstructure and densification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. G. Lütjering and J.C. Williams: Titanium (Springer, Berlin, 2007).

    Google Scholar 

  2. R.M. German: Sintering Theory and Practice (Wiley, NewYork, USA, 1996).

    Google Scholar 

  3. X. Xu, G.L. Nash, and P. Nash: Sintering mechanisms of blended Ti-6Al-4V powder from diffusion path analysis. J. Mater. Sci. 49, 994–1008 (2014).

    Article  CAS  Google Scholar 

  4. Z. Zhang: Simulation of titanium and titanium alloy powder compact forging. Thesis, University of Waikato, Hamilton, New Zealand, 2011.

    Google Scholar 

  5. R.M. German: Powder Metallurgy Science (Metal Powder Industries Federation, Princeton, 1994).

    Google Scholar 

  6. R. Mythili, S. Saroja, and M. Vijayalakshmi: Study of mechanical behavior and deformation mechanism in an α–β Ti–4.4Ta–1.9Nb alloy. Mater. Sci. Eng., A 454–455, 43–51 (2007).

    Article  Google Scholar 

  7. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker: Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metall. Trans. A 15, 1883–1892 (1984).

    Article  Google Scholar 

  8. Y.V.R.K. Prasad and T. Seshacharyulu: Processing maps for hot working of titanium alloys. Mater. Sci. Eng., A 243, 82–88 (1998).

    Article  Google Scholar 

  9. Y. Han, W. Zeng, Y. Qi, and Y. Zhao: Optimization of forging process parameters of Ti600 alloy by using processing map. Mater. Sci. Eng., A 529, 393–400 (2011).

    Article  CAS  Google Scholar 

  10. Z. Zeng, Y. Zhang, and S. Jonsson: Deformation behaviour of commercially pure titanium during simple hot compression. Mater. Des. 30, 3105–3111 (2009).

    Article  CAS  Google Scholar 

  11. W. Peng, W. Zeng, Q. Wang, and H. Yu: Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models. Mater. Des. 51, 95–104 (2013).

    Article  CAS  Google Scholar 

  12. X.G. Fan, H. Yang, and P.F. Gao: Prediction of constitutive behavior and microstructure evolution in hot deformation of TA15 titanium alloy. Mater. Des. 51, 34–42 (2013).

    Article  CAS  Google Scholar 

  13. A. Momeni and S.M. Abbasi: Effect of hot working on flow behavior of Ti-6Al-4V alloy in single phase and two phase regions. Mater. Des. 31, 3599–3604 (2010).

    Article  CAS  Google Scholar 

  14. X.Y. Zhang, M.Q. Li, H. Li, J. Luo, S.B. Su, and H. Wang: Deformation behavior in isothermal compression of the TC11 titanium alloy. Mater. Des. 31, 2851–2857 (2010).

    Article  CAS  Google Scholar 

  15. J. Jia, K. Zhang, and Z. Lu: Dynamic recrystallization kinetics of a powder metallurgy Ti-22Al-25Nb alloy during hot compression. Mater. Sci. Eng., A 607, 630–639 (2014).

    Article  CAS  Google Scholar 

  16. Metal Powder Industries Federation: Standard Test Methods for Metal Powders and Powder Metallurgy Products (Metal Powder Industries Federation, Princeton, 1985).

    Google Scholar 

  17. J. Svoboda and H. Riedel: Pore-boundary interactions and evolution equations for the porosity and the grain size during sintering. Acta Metall. Mater. 40(11), 2829–2840 (1992).

    Article  CAS  Google Scholar 

  18. S.L. Kang: Sintering: Densification, Grain Growth & Microstructure (Elsevier Butterworth-Heinemann, Burlington, UK, 2005).

    Google Scholar 

  19. X. Xu and P. Nash: Sintering mechanisms of Armstrong prealloyed Ti-6Al-4V powders. Mater. Sci. Eng., A 607, 409–416 (2014).

    Article  CAS  Google Scholar 

  20. C.M. Sellars and W.J. McTegart: On the mechanism of hot deformation. Acta Metall. 14, 1136–1138 (1966).

    Article  CAS  Google Scholar 

  21. C. Zener and J.H. Hollomon: Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 15, 22–32 (1944).

    Article  Google Scholar 

  22. Z. Zeng, S. Jonsson, and Y. Zhang: Constitutive equations for pure titanium at elevated temperatures. Mater. Sci. Eng., A 505, 116–119 (2009).

    Article  Google Scholar 

  23. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps (Pergamon Press, Oxford, 1982).

    Google Scholar 

  24. H. Tanaka, T. Yamada, E. Sato, and I. Jimbo: Distinguishing the ambient-temperature creep region in a deformation mechanism map of annealed CP-Ti. Scr. Mater. 54, 121–124 (2006).

    Article  CAS  Google Scholar 

  25. P. Wanjara, M. Jahazi, H. Monajati, S. Yue, and J-P. Immarigeon: Hot working behavior of near-α alloy IMI834. Mater. Sci. Eng., A 396, 50–60 (2005).

    Article  Google Scholar 

  26. T. Sheppard and J. Norley: Deformation characteristics of Ti-6Al-4V. Mater. Sci. Technol. 4, 903–908 (1988).

    Article  CAS  Google Scholar 

  27. J.C. Williams, A.W. Sommer, and P.P. Tung: The influence of oxygen concentration on the internal stress and dislocation arrangements in α titanium. Metall. Trans. 3, 2979–2984 (1972).

    Article  CAS  Google Scholar 

  28. I. Weiss and S.L. Semiatin: Thermomechanical processing of alpha titanium alloys—An overview. Mater. Sci. Eng., A 263, 243–256 (1999).

    Article  Google Scholar 

  29. I.I. Kornilov: Effect of oxygen on titanium and its alloys. Met. Sci. Heat Treat. 15, 826–829 (1973).

    Article  Google Scholar 

  30. M.L. Wasz, F.R. Brotzen, R.B. McLellan, and A.J. Griffin: Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium. Int. Mater. Rev. 41(1), 1–12 (1996).

    Article  CAS  Google Scholar 

  31. S.V.S. Narayana Murty, B. Nageswara Rao, and B.P. Kashyap: Clarification on the physical dimension of K in a constitutive equation for superplastic flow: Σ = Kεm. J. Mater. Process. Technol. 124, 259 (2002).

    Article  Google Scholar 

  32. H. Zeigler: Some extremum principles in irreversible thermodynamics with application to continuum mechanics. In Progress in Solid Mechanics, Vol. 4, I.N. Sneedon and R. Hill eds. (Wiley, New York, 1963); p. 63.

    Google Scholar 

  33. Y.V.R.K. Prasad and S. Sasidhara: Hot Working Guide: A Compendium of Processing Maps (ASM International, Materials Park, OH, 1997); pp. 25–157.

    Google Scholar 

  34. T. Furuhara, B. Poorganji, H. Abe, and T. Maki: Dynamic recovery and recrystallization in titanium alloys by hot deformation. JOM 59(1), 64–67 (2007).

    Article  CAS  Google Scholar 

  35. Y.B. Chun and S.K. Hwang: Static recrystallization of warm-rolled pure Ti influenced by microstructural inhomogeneity. Acta Metall. 56(3), 369–379 (2008).

    CAS  Google Scholar 

  36. S.V.S. Narayana Murty, S. Torizuka, and K. Nagai: Microstructural evolution during simple heavy warm compression of a low carbon steel: Development of a processing map. Mater. Sci. Eng., A, 410–411, 319–323 (2005).

    Article  Google Scholar 

  37. C. Poletti, H.P. Degischer, S. Kremmer, and W. Marketz: Processing maps of Ti662 unreinforced and reinforced with TiC particles according to dynamic models. Mater. Sci. Eng., A 486, 127–137 (1998).

    Article  Google Scholar 

  38. O.D. Sherby, R.D. Caiigiuri, E.S. Kayali, and R.A. White: Fundamentals of superplasticity and its applications. In Advances in Metal Processing, J.J. Burke, R. Mehrabian, and V. Weiss eds.; Plenum Press: New York, 1981; pp. 133–170.

    Chapter  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to acknowledge the financial support provided by Cristal Metal Inc. and Thermal Processing Technology Center in USA, the China Postdoctoral Science Foundation under Grant No. 2014M550235, and the Shanghai Postdoctoral Sustentation Fund under Grant No. 14R21410900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Han, Y., Li, C. et al. Flow behavior and processing map of forging commercial purity titanium powder compact. Journal of Materials Research 30, 1056–1064 (2015). https://doi.org/10.1557/jmr.2015.84

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.84

Navigation