Skip to main content
Log in

Synchrotron radiation investigations of microstructural evolutions of ODS steels and Zr-based alloys irradiated in nuclear reactors

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Synchrotron-based x-ray techniques are used to bring complementary information to local probes such as atom probe tomography and transmission electron microscopy. Two examples of nuclear materials used for the cladding of fuel assembly are given: oxide dispersion strengthened (ODS) alloys and M5™ Zr-based alloys. In both cases, synchrotron radiation analyses bring original results concerning nanosized secondary phases: for M5™, radiation-enhanced precipitation of β-Nb precipitates has been evidence and the crystallographic structure (lattice parameter and Nb content) is reported for the first time and for irradiated ODS, the dissolution of larger oxides is evidenced while a finer distribution of complex Y–Ti–O oxides still acts as obstacles for dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. F. Onimus and J-L. Béchade: Radiation effects in zirconium alloys. In Comprehensive Nuclear Materials, R. Konings, T. Allen, R. Stoller, and S. Yamanaka eds.; Elsevier: Amsterdam, Holland, 2012; p.2.

    Google Scholar 

  2. G.S. Was and R.S. Averback: Radiation damage using ion beams. In Comprehensive Nuclear Materials, R. Konings, T. Allen, R. Stoller, and S. Yamanaka eds.; Elsevier: Amsterdam, Holland, 2012; p. 195.

    Chapter  Google Scholar 

  3. J-L. Béchade, D. Menut, M-L. Lescoat, B. Sitaud, S. Schlutig, P.L. Solari, I. Llorens, H. Hermange, Y. de Carlan, J. Ribis, and L. Toualbi: Application of synchrotron radiation to analyze the precipitation in ODS materials before irradiation in Fe-9%Cr single grain of powder and consolidated Fe-18%Cr. J. Nucl. Mater. 428, 183 (2012).

    Article  Google Scholar 

  4. J-L. Béchade, D. Menut, S. Doriot, S. Schlutig, and B. Sitaud: X-ray diffraction analysis of secondary phases in zirconium alloys before and after neutron irradiation at the MARS synchrotron radiation beamline. J. Nucl. Mater. 437, 365 (2013).

    Article  Google Scholar 

  5. S. Doriot, B. Verhaeghe, J-L. Béchade, D. Menut, D. Gilbon, J-P. Mardon, J-M. Cloue, A. Miquet, and L. Legras: Microstructural evolution of M5TM alloy irradiated in PWRs up to high fluences—Comparison with other Zr-based alloys. In Zirconium in the Nuclear Industry: 17th International Symposium, STP 1543, R. Comstock and P. Barberis eds.; ASTM International: West Conshohocken, PA, 2014; p.1.

    Google Scholar 

  6. P. Dubuisson, R. Schill, M-P. Hugon, I. Grislin, and J.L. Seran: Behavior of an oxide dispersion strengthened ferritic steel irradiated in Phenix. In Effects of Radiation on Materials: 18th International Symposium, ASTM STP 1325, R.K. Nanstad, M.L. Hamilton, F.A. Garner, and S.A. Kumar eds.; ASTM International: West Conshohocken, PA, 1999; p. 882.

    Chapter  Google Scholar 

  7. I. Monnet, P. Dubuisson, Y. Serruys, M.O. Ruault, O. Kaitasov, and B. Jouffrey: Microstructural investigation of the stability under irradiation of oxide dispersion strengthened ferritic steels. J. Nucl. Mater. 335, 311 (2004).

    Article  CAS  Google Scholar 

  8. S. Doriot, D. Gilbon, J.L. Béchade, M.H. Mathon, L. Legras, and J.P. Mardon: Microstructural stability of M5TM alloy irradiated up to high neutron fluences. In Zirconium in the Nuclear Industry: 14th International Symposium, ASTM STP 1467, P. Rudling and B. Kammenzind eds.; ASTM International: West Conshohocken, PA, 2005; p.175.

    Google Scholar 

  9. S. Ukai: Oxide dispersion strengthened steels. In Comprehensive Nuclear Materials, R. Konings, T. Allen, R. Stoller, and S. Yamanaka eds.; Elsevier: Amsterdam, Holland, 2012; p. 242.

    Google Scholar 

  10. P. Dubuisson, Y. de Carlan, V. Garat, and M. Blat: ODS ferritic/martensitic alloys for sodium fast reactor fuel pin cladding. J. Nucl. Mater. 428, 6 (2012).

    Article  CAS  Google Scholar 

  11. Z. Oksiuta, P. Olier, Y. de Carlan, and N. Baluc: Development and characterisation of a new ODS ferritic steel for fusion reactor application. J. Nucl. Mater. 393, 114 (2009).

    Article  CAS  Google Scholar 

  12. A-A.F. Tavassoli, E. Diegele, R. Lindau, N. Luzginova, and H. Tanigawa: Current status and recent research achievements in ferritic/martensitic steels. J. Nucl. Mater. 455, 269 (2014).

    Article  CAS  Google Scholar 

  13. J. Ribis and S. Lozano-Perez: Nano-cluster stability following neutron irradiation in MA957 oxide dispersion strengthened material. J. Nucl. Mater. 444, 314 (2014).

    Article  CAS  Google Scholar 

  14. S. Yamashita, N. Akasaka, S. Ukai, and S. Ohnuki: Microstructural development of a heavily neutron-irradiated ODS ferritic steel (MA957) at elevated temperature. J. Nucl. Mater. 367–370, 202 (2007).

    Article  Google Scholar 

  15. H.J. Frost and K.C. Russell: Recoil resolution and particles stability under irradiation. J. Nucl. Mater. 104, 1427 (1981).

    Article  CAS  Google Scholar 

  16. A. De Bremaecker: Past research and fabrication conducted at SCK.CEN on ferritic ODS alloys used as cladding for FBR’s fuel pins. J. Nucl. Mater. 428, 13 (2012).

    Article  Google Scholar 

  17. C. Zakin, C. Prioul, and D. Francois: Creep behavior of ODS steels. Mater. Sci. Eng., A 219, 102 (1996).

    Article  Google Scholar 

  18. B. Sitaud, P.L. Solari, S. Schlutig, I. Llorens, and H. Hermange: Characterization of radioactive materials using the MARS beamline at the synchrotron SOLEIL. J. Nucl. Mater. 425, 238 (2012).

    Article  CAS  Google Scholar 

  19. G.K. Wertheim, M.A. Butler, K.W. West, and D.N.E. Buchanan: Determination of the Gaussian and Lorentzian content of experimental line shapes. Rev. Sci. Instrum. 45, 1369 (1974).

    Article  Google Scholar 

  20. G. Caglioti, A. Paoletti, and F.P. Ricci: Choice of collimator for a crystal spectrometer for neutron diffraction. Nucl. Instrum. 3, 223 (1958).

    Article  CAS  Google Scholar 

  21. L. Lutterotti: Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 334 (2010).

    Article  CAS  Google Scholar 

  22. A.P. Hammersley, S.O. Svensson, A. Thompson, H. Graafsma, A. Kvick, and J.P. Moy: Calibration and correction of distortion in two-dimensional detector systems. Rev. Sci. Instrum. 66, 2729 (1995).

    Article  CAS  Google Scholar 

  23. J. Rodriguez-Carvajal: FULLPROF: A program for Rietveld refinement and pattern matching analysis. In Abstract of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 1990; p.127.

  24. A.A. Coelho: Indexing of powder diffraction patterns by iterative use of singular value decomposition. J. Appl. Crystallogr. 36, 86 (2003).

    Article  CAS  Google Scholar 

  25. A. Le Bail: Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffr. 20, 316 (2005).

    Article  Google Scholar 

  26. B. Ravel and M. Newville: ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537 (2005).

    Article  CAS  Google Scholar 

  27. M.H. Mathon, M. Perrut, S.Y. Zhong, and Y. de Carlan: Small angle neutron scattering study of martensitic/ferritic ODS alloys. J. Nucl. Mater. 428, 147 (2012).

    Article  CAS  Google Scholar 

  28. H. Sakasegawa, L. Chaffron, F. Legendre, M. Brocq, L. Boulanger, S. Poissonnet, Y. de Carlan, J-L. Béchade, T. Cozzika, and J. Malaplate: Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy. J. Nucl. Mater. 386–388, 511 (2009).

    Article  Google Scholar 

  29. S. Katagiri, N. Ishizawa, and F. Marumo: A new high temperature modification of face-centered cubic Y2O3. Powder Diffr. 8, 60 (1993).

    Article  CAS  Google Scholar 

  30. M. Klimiankou, R. Lindau, A. Moslang, and J. Schroder: TEM study of PM 2000 steel. Powder Metall. 48, 277 (2005).

    Article  CAS  Google Scholar 

  31. S. Yamashita, K. Oka, S. Ohnuki, N. Akasaka, and S. Ukai: Phase stability of oxide dispersion-strengthened of ferritic steels in neutron irradiation. J. Nucl. Mater. 307–311, 283 (2002).

    Article  Google Scholar 

  32. S.V. Rogozhkin, A.A. Aleev, A.G. Zaluzhnyi, A.A. Nikitin, N.A. Iskandarov, P. Vladimirov, R. Lindau, and A. Moslang: Atom probe characterization of nano-scaled features in irradiated ODS Eurofer steel. J. Nucl. Mater. 409, 94 (2011).

    Article  CAS  Google Scholar 

  33. C. Degueldre, S. Conradson, and W. Hoffelner: Characterisation of oxide dispersion-strengthened steel by extended X-ray absorption spectroscopy for its use under irradiation. Comput. Mater. Sci. 33, 3 (2005).

    Article  CAS  Google Scholar 

  34. P. He, T. Liu, A. Moslang, R. Lindau, R. Ziegler, J. Hoffmann, P. Kurinskiy, L. Commin, P. Vladimirov, S. Nikitenko, and M. Silveir: XAFS and TEM studies of the structural of yttrium-enriched oxides in nanostructured ferritic alloys fabricated by a powder metallurgy process. J. Mater. Chem. Phys. 136, 990 (2012).

    Article  CAS  Google Scholar 

  35. S. Liu, G.R. Odette, and C.U. Segre: Evidence for core-shell nanoclusters in oxygen dispersion strengthened steels measured using X-ray absorption spectroscopy. J. Nucl. Mater. 445, 50 (2014).

    Article  CAS  Google Scholar 

  36. V.N. Shishov: The evolution of microstructure and deformation stability in Zr-Nb-(Sn, Fe) alloys under neutron irradiation. In Zirconium in the Nuclear Industry: 16th International Symposium, ASTM STP 1529, P. Rudling and B. Kammenzind eds.; ASTM International: West Conshohocken, PA, 2011; p.37.

    Chapter  Google Scholar 

  37. G.J. Cuello, A. Fernandez Guillermet, G.B. Grad, R.E. Mayer, and J.R. Granada: Structural properties and stability of the bcc and omega phases in Zr-Nb system. I. Neutron diffraction study of a quenched and aged Zr-10 wt% Nb alloy. J. Nucl. Mater. 218, 236 (1995).

    Article  CAS  Google Scholar 

  38. J. Ribis and Y. de Carlan: Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials. Acta Mater. 60, 238 (2012).

    Article  CAS  Google Scholar 

  39. J. Ribis, M-L. Lescoat, S.Y. Zhong, M-H. Mathon, and Y. de Carlan: Influence of the low interfacial density energy on the coarsening resistivity of the nano-oxide particles in Ti-added ODS materials. J. Nucl. Mater. 442, 5101 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank AREVA NP and EdF for the financial support concerning the zirconium-based alloy study. We acknowledge SOLEIL for provision of synchrotron radiation facilities. We are also grateful to the staff of CEA/SEMI for the preparation of thin foils on radioactive materials, and S. Doriot and I. Monnet for the TEM observations on Zr and ODS alloys, respectively. The units in charge of radioactive material transportation and handling at CEA Saclay, CEA/SEMI, and the safety staff of SOLEIL are also gratefully thanked for their essential help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Menut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menut, D., Béchade, JL., Cammelli, S. et al. Synchrotron radiation investigations of microstructural evolutions of ODS steels and Zr-based alloys irradiated in nuclear reactors. Journal of Materials Research 30, 1392–1402 (2015). https://doi.org/10.1557/jmr.2015.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.74

Navigation