Skip to main content
Log in

Influence of yttria and zirconia additions on spark plasma sintering of alumina composites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mechanisms of densification and creep were examined during spark plasma sintering (SPS) of alumina doped with a low and high level of zirconia or yttria, over a temperature range of 1173–1573 K and stresses between 25 and 100 MPa. Large additions of yttria led clearly to in situ reactions during SPS and the formation of a yttrium-aluminum garnet phase. Dopants generally lead to a reduction in the densification rate, with substantial reductions noted in samples with ∼5.5 vol% second phase. In contrast to a stress exponent of n ∼ 1 for pure alumina, the doped aluminas displayed n ∼ 2 corresponding to an interface-controlled diffusion process. The higher activation energies in the composites are consistent with previous data on creep and changes in the interfacial energies. The results reveal a compensation effect, such that an increase in the activation energy is accompanied by a corresponding increase in the pre-exponential term for diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763 (2006).

    CAS  Google Scholar 

  2. Z.A. Munir, D.V. Quach, and M. Ohyanagi: Electric current activation of sintering: A review of the pulsed electric current sintering process. J. Am. Ceram. Soc. 94, 1 (2011).

    CAS  Google Scholar 

  3. V. Viswanathan, T. Laha, K. Balani, A. Agarwal, and S. Seal: Challenges and advances in nanocomposite processing techniques. Mater. Sci. Eng., R 54, 121 (2006).

    Google Scholar 

  4. F. Wakai, T. Iga, and T. Nagano: Effect of dispersion of zirconia particles on creep of fine-grained alumina. J. Ceram. Soc. Jpn. 96, 1206 (1988).

    CAS  Google Scholar 

  5. P. Gruffel and C. Carry: Effect of grain size on yttrium grain boundary segregation in fine-grained alumina. J. Eur. Ceram. Soc. 11, 189 (1993).

    CAS  Google Scholar 

  6. J.D. French, J. Zhao, M.P. Harmer, H.M. Chan, and G.A. Miller: Creep of duplex microstructures. J. Am. Ceram. Soc. 77, 2857 (1994).

    CAS  Google Scholar 

  7. H. Yoshida, Y. Ikuhara, and T. Sakuma: High temperature creep resistance in rare-earth doped, fine grained alumina. J. Mater. Res. 13, 2597 (1998).

    CAS  Google Scholar 

  8. J. Cho, C.M. Wang, H.M. Chan, J.M. Rickman, and M.P. Harmer: Role of segregating dopants on the improved creep resistance of aluminium oxide. Acta Mater. 47, 4197 (1999).

    CAS  Google Scholar 

  9. R. Voytovych, I. Maclaren, M.A. Gulgun, R.M. Cannon, and M. Ruhle. The effect of yttrium on densification and grain growth in α-alumina. Acta Mater. 50, 3453 (2002).

    CAS  Google Scholar 

  10. M.A. Stough and J.R. Hellmann: Solid solubility and precipitation in a single crystal alumina-zirconia system. J. Am. Ceram. Soc. 85, 2895 (2002).

    CAS  Google Scholar 

  11. H. Yoshida, Y. Ikuhara, and T. Sakuma: High temperature plastic deformation related to grain boundary chemistry in cation-doped alumina. Mater. Sci. Eng., A 387–389, 723 (2004).

    Google Scholar 

  12. L.N. Satapathy and A.H. Chokshi: Microstructural development and creep deformation in an alumina-5% yttrium aluminium garnet composite. J. Am. Ceram. Soc. 88, 2848 (2005).

    CAS  Google Scholar 

  13. F. Wakai, T. Nagano, and T. Iga: Hardening in creep of alumina by zirconium segregation at the grain boundary. J. Am. Ceram. Soc. 80, 2361 (1997).

    CAS  Google Scholar 

  14. J. Wang and R. Raj: Estimate of the activation energies for boundary diffusion from rate-controlled sintering of pure alumina and alumina doped with zirconia or titania. J. Am. Ceram. Soc. 73, 1172 (1990).

    CAS  Google Scholar 

  15. J. Wang and R. Raj: Activation energy for the sintering of two-phase alumina/zirconia ceramics. J. Am. Ceram. Soc. 74, 1959 (1991).

    CAS  Google Scholar 

  16. P. Palmero, G. Fantozzi, F. Lomello, G. Bonnefont, and L. Montanaro: Creep behavior of alumina/YAG composites prepared by different sintering routes. Ceram. Int. 38, 433–441 (2012).

    CAS  Google Scholar 

  17. M. Yoshimura, T. Ojhi, M. Sando, Y.H. Choa, T. Sekina, and K. Niihara: Synthesis of nanograined ZrO2-based composite by chemical processing and pulsed electric current sintering. Mater. Lett. 38, 18 (1999).

    CAS  Google Scholar 

  18. Y. Takano, T. Ozawa, M. Yoshinaka, K. Hirota, and O. Yamaguchi: Microstructure and mechanical properties of ZrO2(2Y)-toughened Al2O3 ceramics fabricated by spark plasma sintering. J. Mater. Synth. Process. 7, 107 (1999).

    CAS  Google Scholar 

  19. L. Gao, H.Z. Wang, J.S. Hong, H. Miyamoto, K. Miyamoto, Y. Nishikawa, and S.D.D.L. Torre: SiC-ZrO2(3Y)-Al2O3 nanocomposites superfast densified by spark plasma sintering. Nanostruct. Mater. 11, 43 (1999).

    CAS  Google Scholar 

  20. J. Hong, L. Gao, S.D.D.L. Torre, H. Miyamoto, and K. Miyamoto: Spark plasma sintering and mechanical properties of ZrO2 (Y2O3)-Al2O3 composites. Mater. Lett. 43, 27 (2000).

    CAS  Google Scholar 

  21. D.D. Jayaseelan, N. Kondo, D.A. Rani, S. Ueno, T. Ojhi, and S. Kanzaki: Pulsed electric current sintering of Al2O3/3 vol% ZrO2 with constrained grains and high strength. J. Am. Ceram. Soc. 85, 2870 (2002).

    CAS  Google Scholar 

  22. F.F. Lange and M.M. Hirlinger: Hindrance of grain growth in Al2O3 by ZrO2 inclusion. J. Am. Ceram. Soc. 67, 164 (1984).

    CAS  Google Scholar 

  23. ASTM C373-88: Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity and Apparent Specific Gravity of Fired Whiteware Products, (ASTM International, West Conshohocken, PA, 2006).

    Google Scholar 

  24. M.I. Mendelson: Average grain size in polycrystalline ceramics. J. Am. Ceram. Soc. 52, 443 (1969).

    CAS  Google Scholar 

  25. D. Chakravarty and A.H. Chokshi: Direct characterizing of densification mechanisms during spark plasma sintering. J. Am. Ceram. Soc. 97, 765 (2014).

    CAS  Google Scholar 

  26. L. Gao, Z. Shen, H. Miyamoto, and M. Nygren: Superfast densification in oxide-oxide ceramic composites. J. Am. Ceram. Soc. 82, 1061 (1999).

    CAS  Google Scholar 

  27. S. Ghosh, A.H. Chokshi, P. Lee, and R. Raj: A huge effect of weak dc electrical fields on grain growth of zirconia. J. Am. Ceram. Soc. 92, 1856 (2009).

    CAS  Google Scholar 

  28. C-S. Smith: Grains, phases and interfaces: An interpretation of microstructures. Trans. AMIE. 175, 15 (1948).

    Google Scholar 

  29. M.J.N.V. Prasad and A.H. Chokshi: Microstructural stability and superplasticity in an electrodeposited nanocrystalline Ni-P alloy. Acta Mater. 59, 4055 (2011).

    CAS  Google Scholar 

  30. E. Arzt, M.F. Ashby, and R.A. Verrall: Interface controlled diffusional creep. Acta Metall. 31, 1977 (1983).

    CAS  Google Scholar 

  31. V.T. Borisov, V.M. Golikov, and G.V. Shcherbedinski: On the relation between diffusion co-efficients and grain-boundary energies. Phys. Met. Metallogr. 17, 881 (1964).

    CAS  Google Scholar 

  32. R.L. Coble: Diffusion models for hot pressing with surface energy and pressure effects as driving forces. J. Appl. Phys. 41, 4798 (1970).

    Google Scholar 

  33. J.H. Schneibel and P.M. Hazzledine: The role of Coble creep and interface control in superplastic Sn-Pb alloys. J. Mater. Sci. 18, 562 (1983).

    Google Scholar 

  34. O.D. Sherby and J. Wadsworth: Superplasticity—Recent advances and future directions. Prog. Mater. Sci. 33, 169 (1989).

    CAS  Google Scholar 

  35. T.G. Langdon: A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 42, 2437 (1994).

    CAS  Google Scholar 

  36. H. Cheng, H.S. Caram, W.E. Schiesser, J.M. Rickman, H.M. Chan, and M.P. Harmer: Oxygen grain-boundary transport in polycrystalline alumina using wedge-geometry bilayer samples: Effect of Y-doping. Acta Mater. 58, 2442 (2010).

    CAS  Google Scholar 

  37. A.H. Heuer: Oxygen and aluminum diffusion in α-alumina. How much do we really understand?J. Eur. Ceram. Soc. 28, 1495 (2008).

    CAS  Google Scholar 

  38. A.H. Chokshi: The densification, superplastic deformation and fracture characteristics of a 3 mol% yttria stabilized zirconia. In Progress in Advanced Materials and Mechanics, W. Tzuchiang and T-W. Chou eds. (Peking University Press, China, 1996); 381–386.

    Google Scholar 

  39. A.H. Chokshi: Diffusion, diffusion creep and grain growth characteristics of nanocrystalline and fine-grained monoclinic, tetragonal and cubic zirconia. Scr. Mater. 48, 791 (2003).

    CAS  Google Scholar 

  40. R.M. Cannon, W.H. Rhodes, and A.H. Heuer: Plastic deformation of fine grained alumina: I. Interface controlled diffusional creep. J. Am. Ceram. Soc. 63, 46 (1980).

    CAS  Google Scholar 

  41. G. Gottstein and L.S. Shvindlerman: The compensation effect in thermally activated interface processes. Interface Sci. 6, 265 (1998).

    CAS  Google Scholar 

  42. S.V. Divinski and H. Edelhoff: Diffusion and segregation of silver in copper ∑5(310) grain boundary. Phys. Rev. B 85, 144104 (2012).

    Google Scholar 

  43. M.J. Kim, Y.K. Cho, and D.Y. Yoon: Kinked grain boundaries in alumina doped with Y2O3. J. Am. Ceram. Soc. 87, 717 (2004).

    CAS  Google Scholar 

  44. P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer, and M.P. Harmer: Grain boundary complexions. Acta Mater. 62, 1 (2014).

    CAS  Google Scholar 

  45. S.K. Behera, P.R. Cantwell, and M.P. Harmer: A grain boundary mobility discontinuity in reactive element Zr-doped alumina. Scr. Mater. 90–91, 33 (2014).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Department of Science and Technology. We gratefully acknowledge the support and useful discussions with Dr. G. Sundararajan. One of us (AHC) is also grateful to Professor Laszlo Toth for support during a sabbatical leave at the University of Lorraine, Metz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibyendu Chakravarty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravarty, D., Chokshi, A.H. Influence of yttria and zirconia additions on spark plasma sintering of alumina composites. Journal of Materials Research 30, 1148–1156 (2015). https://doi.org/10.1557/jmr.2015.72

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.72

Navigation