Skip to main content

Advertisement

Log in

Improved hydrogen storage properties of Ti-doped Mg95Ni5 powder produced by hydriding combustion synthesis

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ti was added to Mg–Ni alloy (Mg95Ni5) by a novel hydriding combustion synthesis (HCS) process. The effect of Ti on hydrogen absorption/desorption kinetics of Mg95Ni5 was investigated. The results showed that Ti had superior catalytic effects on hydrogen storage properties of Mg95Ni5, which required only 80 s to reach its saturated hydrogen absorption capacity of 6.29 wt% at 473 K and released 5.49 wt% hydrogen within 900 s at 553 K. Based on an Arrhenius analysis, the activation energy of the hydrogen desorption process was 80.8 kJ mol−1 for the main phase of MgH2 in the Ti-doped Mg95Ni5. The excellent hydriding/dehydriding properties were related to the existence of TiH1.924, which improved the efficiency of mechanical milling and was helpful in the refinement of the crystallite size of MgH2, resulting in more fresh surface area and grain boundary area. Besides, it was thought to restrain the Mg particles from growth during the hydrogenation/dehydrogenation cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. L. Schlapbach and A. Züttel: Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001).

    Article  CAS  Google Scholar 

  2. M.X. Gao, J. Gu, H.G. Pan, Y.L. Wang, Y.F. Liu, C. Liang, and Z.X. Guo: Ca(BH4)2-LiBH4-MgH2: A novel ternary hydrogen storage system with superior long-term cycling performance. J. Mater. Chem. 1, 12285 (2013).

    Article  CAS  Google Scholar 

  3. P.B. Amama, J.T. Grant, J.E. Spowart, P.J. shamberger, A.A. Voevodin, and T.S. Fisher: Catalytic influence of Ni-based additives on the dehydrogenation properties of ball milled MgH2. J. Mater. Res. 26, 2725 (2011).

    Article  CAS  Google Scholar 

  4. Y. Jia, Y.A. Guo, J. Zou, and X.D. Yao: Hydrogenation/dehydrogenation in MgH2-activated carbon composites prepared by ball milling. Int. J. Hydrogen Energy 37, 7579 (2012).

    Article  CAS  Google Scholar 

  5. L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, and M. Zhu: Enhanced dehydriding thermodynamics and kinetics in Mg(In)–MgF2 composite directly synthesized by plasma milling. J. Alloys Compd. 586, 113 (2014).

    Article  CAS  Google Scholar 

  6. Q. Li, Q. Lin, K.C. Chou, L.J. Jiang, and F. Zhan: Hydrogen storage properties of mechanically alloyed Mg–8 mol% LaNi0.5 composite. J. Mater. Res. 19, 2871 (2011).

    Article  Google Scholar 

  7. P. Li, Q. Wan, Z.L. Li, F.Q. Zhai, Y.L. Li, L.Q. Cui, X.H. Qu, and A.A. Volinsky: MgH2 dehydrogenation properties improved by MnFe2O4 nanoparticles. J. Power Sources 239, 201 (2013).

    Article  CAS  Google Scholar 

  8. L.P. Ma, P. Wang, X.D. Kang, and H.M. Chen: Preliminary investigation on the catalytic mechanism of TiF3 additive in MgH2–TiF3 H-storage system. J. Mater. Res. 22, 1779 (2011).

    Article  Google Scholar 

  9. C.S. Zhou, Z.Z. Fang, C. Ren, J.Z. Li, and J. Lu: Effect of Ti intermetallic catalysts on hydrogen storage properties of magnesium hydride. J. Phys. Chem. C 117, 12973 (2013).

    Article  CAS  Google Scholar 

  10. L.P. Ma, P. Wang, and H.M. Cheng: Hydrogen sorption kinetics of MgH2 catalyzed with titanium compounds. Int. J. Hydrogen Energy 35, 3046 (2010).

    Article  CAS  Google Scholar 

  11. E. Grigorova, M. Spassova, T. Spassov, and M. Khristov: Hydrogen sorption properties of 90 wt% MgH2–10 wt% MeSi2 (Me = Ti, Cr). J. Mater. Sci. 49, 2647 (2014).

    Article  CAS  Google Scholar 

  12. J. Zhang, Y.N. Huang, C. Mao, and P. Peng: Synergistic effect of Ti and F co-doping on dehydrogenation properties of MgH2 from first-principles calculations. J. Alloys Compd. 528, 205 (2012).

    Article  Google Scholar 

  13. X.F. Liu, Y.F. Zhu, and L.Q. Li: Hydrogen storage properties of Mg100-xNix (x=5, 11.3, 20, 25) composites prepared by hydriding combustion synthesis followed by mechanical milling (HCS+MM). Intermetallics 15, 1582 (2007).

    Article  CAS  Google Scholar 

  14. Y.F. Zhu, Y.F. Liu, H. Gu, and L.Q. Li: Structural and hydriding/dehydriding properties of Mg–La–Ni-based composites. J. Alloys Compd. 477, 440 (2009).

    Article  CAS  Google Scholar 

  15. H. Gu, Y.F. Zhu, and L.Q. Li: Hydrogen storage properties of Mg–Ni–Cu prepared by hydriding combustion synthesis and mechanical milling (HCS+MM). Int. J. Hydrogen Energy 34, 2654 (2009).

    Article  CAS  Google Scholar 

  16. Y.F. Zhu, Z.B. Liu, Y. Yang, H. Gu, L.Q. Li, and M. Cai: Hydrogen storage properties of Mg-Ni-C system hydrogen storage materials prepared by hydriding combustion synthesis and mechanical milling. Int. J. Hydrogen Energy 35, 6350 (2010).

    Article  CAS  Google Scholar 

  17. Y.F. Zhu, Y. Yang, L.J. Wei, Z.L. Zhao, and L.Q. Li: Hydrogen storage properties of Mg–Ni–Fe composites prepared by hydriding combustion synthesis and mechanical milling. J. Alloys Compd. 520, 207 (2012).

    Article  CAS  Google Scholar 

  18. R.R. Shahi, A.P. Tiwari, M.A. Shaz, and O.N. Srivastava: Studies on de/rehydrogenation characteristics of nanocrystalline MgH2 co-catalyzed with Ti, Fe and Ni. Int. J. Hydrogen Energy 38, 2778 (2013).

    Article  CAS  Google Scholar 

  19. J. Cui, H. Wang, J.W. Liu, L.Z. Ouyang, Q.A. Zhang, D.L. Sun, X.D. Yao, and M. Zhu: Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts. J. Mater. Chem. A 1, 5603 (2013).

    Article  CAS  Google Scholar 

  20. M.P. Pitt, M. Paskevicius, C.J. Webb, D.A. Sheppard, C.E. Buckley, and E.M. Gray: The synthesis of nanoscopic Ti based alloys and their effects on the MgH2 system compared with the MgH2 + 0.01Nb2O5 benchmark. Int. J. Hydrogen Energy 37, 4227 (2012).

    Article  CAS  Google Scholar 

  21. Y.P. Pang, Y.F. Liu, X. Zhang, M.X. Gao, and H.G. Pang: Role of particle size, grain size, microstrain and lattice distortion in improved dehydrogenation properties of the ball-milled Mg(AlH4)2. Int. J. Hydrogen Energy 38, 1460 (2013).

    Article  CAS  Google Scholar 

  22. R.R. Shahi, A. Bhatnagar, S.K. Pandey, V. Dixit, and O.N. Srivastava: Effects of Ti-based catalysts and synergistic effect of SWCNTs-TiF3 on hydrogen uptake and release from MgH2. Int. J. Hydrogen Energy 39, 14255 (2014).

    Article  CAS  Google Scholar 

  23. C.Y. Zhu and T. Akiyama: Zebra-striped fibers in relation to the H2 sorption properties for MgH2 nanofibers produced by a vapor–solid process. Cryst. Growth Des. 12, 4043 (2012).

    Article  CAS  Google Scholar 

  24. J. Huot, G. Liang, S. Boily, A.V. Neste, and R. Schulz: Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J. Alloys Compd. 293–295, 495 (1999).

    Article  Google Scholar 

  25. T. Liu, C.G. Qin, M. Zhu, Y.R. Cao, H.L. Shen, and X.G. Li: Synthesis and hydrogen storage properties of Mg–La–Al nanoparticles. J. Power Sources 219, 100 (2012).

    Article  CAS  Google Scholar 

  26. Z.S. Wronski, G.J.C. Carpenter, T. Czujko, and R.A. Varin: A new nanonickel catalyst for hydrogen storage in solid-state magnesium hydrides. Int. J. Hydrogen Energy 36, 1159 (2010).

    Article  Google Scholar 

  27. Y.J. Choi, J. Lu, H.Y. Sohn, and Z.Z. Fang: Hydrogen storage properties of the Mg–Ti–H system prepared by high-energy–high-pressure reactive milling. J. Power Sources 180, 491 (2008).

    Article  CAS  Google Scholar 

  28. M.Y. Song, Y.J. Kwak, S.H. Lee, J. Song, and D.R. Mumm: Enhancement of hydrogen-storage performance of MgH2 by Mg2Ni formation and hydride-forming Ti addition. Int. J. Hydrogen Energy 37, 18133 (2012).

    Article  CAS  Google Scholar 

  29. M.Y. Song, Y.J. Kwak, H.S. Shin, S.H. Lee, and B.G. Kim: Improvement of hydrogen-storage properties of MgH2 by Ni, LiBH4, and Ti addition. Int. J. Hydrogen Energy 38, 1910 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (51471087, 51171079), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (13KJA430003), Innovation Foundation for Graduate Students of Jiangsu Province (KYLX_0741, CXZZ13_0420), Qing Lan Project and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liquan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Zhu, Y., Yuan, J. et al. Improved hydrogen storage properties of Ti-doped Mg95Ni5 powder produced by hydriding combustion synthesis. Journal of Materials Research 30, 967–972 (2015). https://doi.org/10.1557/jmr.2015.62

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.62

Navigation