Skip to main content
Log in

Curie temperature controlled self-healing magnet–polymer composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Many self-healing polymers require elevated temperatures for healing. Curie temperature (TC) controlled magnetic nanoparticles can generate heat through the application of an external alternating magnetic field (AMF). Thus, heating can be localized and regulated, preventing damage to the polymer due to high temperatures. In this work, novel TC controlled magnetic nanoparticle filler–polymer matrix composites (Magpol) were investigated as wire insulation materials. Mn–Zn ferrites were introduced as the filler in a thermoplastic polyethylene vinyl acetate (EVA) matrix. The composite was subjected to different damage modes, such as chaffing and tear. Greater healing efficiency was obtained at lower filler loading compared to other relevant systems. Efficient healing was obtained without any thermal degradation. Good agreement was observed between experimental results and theoretical models of polymer healing. Thus, a Curie temperature controlled magnetic nanocomposite system was developed with improved self-healing capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. B.J. Blaiszik, S.L.B. Kramer, S.C. Olugebefola, J.S. Moore, N.R. Sottos, and S.R. White: Self-healing polymers and composites. Annu. Rev. Mater. Res. 40, 179 (2010).

    Article  CAS  Google Scholar 

  2. W.H. Binder: Self-healing Polymers: From Principles to Applications Vol. 1, 1st ed. (Wiley-VCH Verlag GmbH, Weinheim, 2013); p. 450.

    Book  Google Scholar 

  3. N. Sottos, S. White, and I. Bond: Introduction: Self-healing polymers and composites. J. R. Soc., Interface 4, 347 (2007).

    Article  Google Scholar 

  4. V.Q. Nguyen, A.S. Ahmed, and R.V. Ramanujan: Morphing soft magnetic composites. Adv. Mater. 24, 4041 (2012).

    Article  CAS  Google Scholar 

  5. S. Zwaag: Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science, Vol. 1 1st ed. (Springer, Delft, 2007); p.

    Book  Google Scholar 

  6. E. Palleau, S. Reece, S.C. Desai, M.E. Smith, and M.D. Dickey: Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv. Mater. 25, 1589 (2013).

    Article  CAS  Google Scholar 

  7. B. Esser, D. Huston, G. Spencer, D. Burns, and E. Kahn: Active self-healing wire insulation. In Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies, Vol. 5762, SPIE: San Diego, 2005; p. 8.

    Google Scholar 

  8. C.F. Parrish: Self-healing wire insulation. Pat. No. US20120115971 A1, US Patent and trademark office, 2012.

  9. D. Evans: Wiring matters; an overview of the aircraft wiring issue. Aviat. Maint. 1, 30 (2006).

    Google Scholar 

  10. V.S. Ivanov, I.I. Migunova, N.A. Kalinina, and G.N. Aleksandrov: Radiation processing of polymer insulators: A method for improving their properties and performance. Polym. Eng. Sci. 36, 1941 (1996).

    Article  CAS  Google Scholar 

  11. K.J. Miller, K.N. Collier, H.B. Soll-Morris, R. Swaminathan, and M.E. McHenry: Induction heating of FeCo nanoparticles for rapid rf curing of epoxy composites. J. Appl. Phys. 105, 07E717 (2009).

    Article  CAS  Google Scholar 

  12. S. Xu, A.D. Pickel, A. Prasitthipayong, A.H. Habib, and M.E. McHenry: Modeling of localized reflow in solder/magnetic nanocomposites for area-array packaging. J. Appl. Phys. 113, 17A305 (2013).

    Article  CAS  Google Scholar 

  13. S. Xu, A. Prasitthipayong, A.D. Pickel, A.H. Habib, and M.E. McHenry: Mechanical properties of FeCo magnetic particles-based Sn-Ag-Cu solder composites. Appl. Phys. Lett. 102, 251909 (2013).

    Article  CAS  Google Scholar 

  14. J.W. Hubbard, F. Orange, M.J.F. Guinel, A.J. Guenthner, J.M. Mabry, C.M. Sahagun, and C. Rinaldi: Curing of a bisphenol E based cyanate ester using magnetic nanoparticles as an internal heat source through induction heating. ACS Appl. Mater. Interfaces 5, 11329, (2013).

    Article  CAS  Google Scholar 

  15. M. Gragert, M. Schunack, and W.H. Binder: Azide/alkyne-“click”-reactions of encapsulated reagents: Toward self-healing materials. Macromol. Rapid Commun. 32, 419 (2011).

    Article  CAS  Google Scholar 

  16. R.S. Trask, G.J. Williams, and I.P. Bond: Bioinspired self-healing of advanced composite structures using hollow glass fibres. J. R. Soc., Interface 4, 363 (2007).

    Article  CAS  Google Scholar 

  17. M.A.M. Rahmathullah and G.R. Palmese: Crack-healing behavior of epoxy–amine thermosets. J. Appl. Polym. Sci. 113 (4), 2191 (2009).

    Article  CAS  Google Scholar 

  18. B.J. Adzima, C.J. Kloxin, and C.N. Bowman: Externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating. Adv. Mater. 22, 2784 (2010).

    Article  CAS  Google Scholar 

  19. D. Habault, H. Zhang, and Y. Zhao: Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 42, 7244 (2013).

    Article  CAS  Google Scholar 

  20. S.D. Bergman and F. Wudl: Mendable polymers. J. Mater. Chem. 18, 41 (2008).

    Article  CAS  Google Scholar 

  21. N. Holten-Andersen, M.J. Harrington, H. Birkedal, B.P. Lee, P.B. Messersmith, K.Y.C. Lee, and J.H. Waite: pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl. Acad. Sci. 108, 2651 (2011).

    Article  CAS  Google Scholar 

  22. C. Toncelli, D.C. De Reus, F. Picchioni, and A.A. Broekhuis: Properties of reversible Diels–Alder furan/maleimide polymer networks as function of crosslink density. Macromol. Chem. Phys. 213, 157 (2012).

    Article  CAS  Google Scholar 

  23. S.H. Cho, S.R. White, and P.V. Braun: Room-temperature polydimethylsiloxane-based self-healing polymers. Chem. Mater. 24, 4209 (2012).

    Article  CAS  Google Scholar 

  24. Y.C. Yuan, T. Yin, M.Z. Rong, and M.Q. Zhang: Self healing in polymers and polymer composites. concepts, realization and outlook: A review. eXPRESS Polym. Lett. 2, 238 (2008).

    Article  CAS  Google Scholar 

  25. S. Burattini, H.M. Colquhoun, B.W. Greenland, and W. Hayes: Self-Healing and Mendable Supramolecular Polymers: Supramolecular Chemistry, 1st ed. (John Wiley & Sons, Ltd, Hoboken, NJ, 2012).

    Book  Google Scholar 

  26. J.A. Syrett, C.R. Becer, and D.M. Haddleton: Self-healing and self-mendable polymers. Polym. Chem. 1, 978 (2010).

    Article  CAS  Google Scholar 

  27. K.S. Toohey, N.R. Sottos, J.A. Lewis, J.S. Moore, and S.R. White: Self-healing materials with microvascular networks. Nat. Mater. 6, 581 (2007).

    Article  CAS  Google Scholar 

  28. R.P. Wool: Self-healing materials: A review. Soft Matter 4, 400 (2008).

    Article  CAS  Google Scholar 

  29. Y. Amamoto, H. Otsuka, A. Takahara, and K. Matyjaszewski: Self-Healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv. Mater. 24, 3975 (2012).

    Article  CAS  Google Scholar 

  30. R.S. Trask, H.R. Williams, and I.P. Bond: Self-healing polymer composites: Mimicking nature to enhance performance. Bioinspiration Biomimetics 2, 1 (2007).

    Article  CAS  Google Scholar 

  31. J.A. Yoon, J. Kamada, K. Koynov, J. Mohin, R. Nicolaÿ, Y. Zhang, A.C. Balazs, T. Kowalewski, and K. Matyjaszewski: Self-healing polymer films based on thiol–disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45, 142 (2011).

    Article  CAS  Google Scholar 

  32. D.Y. Wu, S. Meure, and D. Solomon: Self-healing polymeric materials: A review of recent developments. Prog. Polym. Sci. 33, 479 (2008).

    Article  CAS  Google Scholar 

  33. M.L.G. van Gemert, J.W. Peeters, S.H.M. Söntjens, H.M. Janssen, and A.W. Bosman: Self-healing supramolecular polymers in action. Macromol. Chem. Phys. 213, 234 (2012).

    Article  CAS  Google Scholar 

  34. S.J. Kalista, T.C. Ward, and Z. Oyetunji: Self-Healing of Poly(Ethylene-co-Methacrylic Acid) Copolymers Following Projectile Puncture. Mech. Adv. Mater. Struct. 14, 391 (2007).

    Article  CAS  Google Scholar 

  35. Y. Zhang, A.A. Broekhuis, and F. Picchioni: Thermally self-healing polymeric materials: The next step to recycling thermoset polymers?Macromolecules 42, 1906 (2009).

    Article  CAS  Google Scholar 

  36. P. Jong Se, K. Takahashi, Z. Guo, Y. Wang, E. Bolanos, C. Hamann-Schaffner, E. Murphy, F. Wudl, and H.T. Hahn: Towards development of a self-healing composite using a mendable polymer and resistive heating. J. Compos. Mater. 42, 2869 (2008).

    Article  CAS  Google Scholar 

  37. E.B. Murphy and F. Wudl: The world of smart healable materials. Prog. Polym. Sci. 35, 223 (2010).

    Article  CAS  Google Scholar 

  38. S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, and S. Viswanathan: Autonomic healing of polymer composites. Nature 409, 794 (2001).

    Article  CAS  Google Scholar 

  39. X. Chen, F. Wudl, A.K. Mal, H. Shen, and S.R. Nutt: New thermally remendable highly cross-linked polymeric materials. Macromolecules 36, 1802 (2003).

    Article  CAS  Google Scholar 

  40. J. Ax and G. Wenz: Thermoreversible networks by Diels–Alder reaction of cellulose furoates with bismaleimides. Macromol. Chem. Phys. 213, 182 (2012).

    Article  CAS  Google Scholar 

  41. T. Duenas, E. Andrew, C. Karen, C. Matt, S. Vishnu Baba, W. Fred, B.M. Erin, M. Ajit, R.A. James, C. Aaron, and K.O. Teng: Smart self-healing material systems using inductive and resistive heating. In Smart Coatings III, American Chemical Society Symposium Series, Vol. 1050, 2010; p. 45.

    CAS  Google Scholar 

  42. C.C. Corten and M.W. Urban: Repairing polymers using oscillating magnetic field. Adv. Mater. 21, 5011 (2009).

    Article  CAS  Google Scholar 

  43. T. Duenas, J. Schlitter, N. Lacevic, A. Jha, K. Chai, F. Wudl, L. Westcott-Baker, A. Mal, A. Corder, and T.K. Ooi: Ballistic missile defense system (BMDS) solutions using remendable polymers. In Time Dependent Constitutive Behavior and Fracture/Failure Processes, T. Proulx ed.; Springer: New York, 2011; pp. 15267.

    Article  Google Scholar 

  44. J. Feng, L.Q. Guo, X. Xu, S.Y. Qi, and M.L. Zhang: Hydrothermal synthesis and characterization of Mn1−xZnxFe2O4 nanoparticles. Phys. B 394, 100 (2007).

    Article  CAS  Google Scholar 

  45. N.T. Lan, T.D. Tien, N.P. Duong, and D.V. Truong: Magnetic properties of Mn1−xZnxFe2O4 ferrite nanoparticles prepared by using co-precipitation. J. Korean Phys. Soc. 52, 1522 (2008).

    Article  CAS  Google Scholar 

  46. Y.H. Kim and R.P. Wool: A theory of healing at a polymer-polymer interface. Macromolecules 16, 1115 (1983).

    Article  CAS  Google Scholar 

  47. R. Varley: Ionomers as Self Healing Polymers in Self Healing Materials, Vol. 100, S. Zwaag ed.; (Springer, Netherlands, 2008); p. 95.

  48. R.E. Rosensweig: Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370 (2002).

    Article  CAS  Google Scholar 

  49. S. Purushotham and R.V. Ramanujan: Modeling the performance of magnetic nanoparticles in multimodal cancer therapy. J. Appl. Phys. 107, 114701 (2010).

    Article  CAS  Google Scholar 

  50. I. Levine, R.B. Zvi, M. Winkler, A.M. Schmidt, and M. Gottlieb: Magnetically induced heating in elastomeric nanocomposites - Theory and experiment. Macromol. Symp. 291, 278 (2010).

    Article  CAS  Google Scholar 

  51. L.J. Bastien and J.W. Gillespie: A non-isothermal healing model for strength and toughness of fusion bonded joints of amorphous thermoplastics. Polym. Eng. Sci. 31, 1720 (1991).

    Article  CAS  Google Scholar 

  52. F.O. Sonmez and H.T. Hahn: Analysis of the on-line consolidation process in thermoplastic composite tape placement. J. Thermoplast. Compos. Mater., 10, 543 (1997).

    Article  CAS  Google Scholar 

  53. F. Yang and R. Pitchumani: Healing of thermoplastic polymers at an interface under nonisothermal conditions. Macromolecules 35, 3213 (2002).

    Article  CAS  Google Scholar 

  54. X. Zheng, B.B. Sauer, J.G. Van Alsten, S.A. Schwarz, M.H. Rafailovich, J. Sokolov, and M. Rubinstein: Reptation dynamics of a polymer melt near an attractive solid interface. Phys. Rev. Lett. 74, 407 (1995).

    Article  CAS  Google Scholar 

  55. J. Kalfus and J. Jancar: Relaxation processes in PVAc-HA nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 45, 1380, (2007).

    Article  CAS  Google Scholar 

  56. A. Subbotin, A. Semenov, and M. Doi: Friction in strongly confined polymer melts: Effect of polymer bridges. Phys. Rev. E 56, 623 (1997).

    Article  CAS  Google Scholar 

  57. K. McNerny, Y. Kim, D. Laughlin, and M. McHenry: Chemical synthesis of monodisperse γ-Fe–Ni magnetic nanoparticles with tunable Curie temperatures for self-regulated hyperthermia. J. Appl. Phys. 107, 09A312 (2010).

    Article  CAS  Google Scholar 

  58. M.Q. Zhang and M.Z. Rong: Theoretical consideration and modeling of self-healing polymers. J. Polym. Sci., Part B: Polym. Phys. 50, 229 (2012).

    Article  CAS  Google Scholar 

  59. E. Tuncer, A. Rondinone, J. Woodward, I. Sauers, D.R. James, and A. Ellis: Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics. Appl. Phys. A 94, 843 (2009).

    Article  CAS  Google Scholar 

  60. J.C. Aphesteguy and S.E. Jacobo: Composite of polyaniline containing iron oxides. Phys. B 354, 224 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raju V. Ramanujan.

Additional information

Supplementary Material

To view supplementary material for this article, please visit http://dx.doi.org/jmr.2015.59X.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A.S., Ramanujan, R.V. Curie temperature controlled self-healing magnet–polymer composites. Journal of Materials Research 30, 946–958 (2015). https://doi.org/10.1557/jmr.2015.59

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.59

Navigation