Skip to main content
Log in

Chemical synthesis and optical characterization of regular and magic-sized CdS quantum dot nanocrystals using 1-dodecanethiol

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Cadmium sulfide (CdS) quantum dot (QD) nanoparticles have been synthesized using a one-pot noninjection reaction procedure in solvent medium 1-octadecene. This approach used a cadmium salt and 1-dodecanethiol, an organic sulfur, as the cadmium and sulfur sources, respectively, along with a long-chain organic acid (myristic acid, lauric acid, or stearic acid). The acid has dual effects as a surface capping ligand and a solubility controlling agent as well. UV–Vis and photoluminescence (PL) spectrometry techniques were used to characterize the optical properties, along with transmission electron microscopy (TEM) to identify the structure and size. Our newly developed synthesis procedure allowed for investigation of both regular and “magic-sized” CdS QDs by systematically controlling reaction parameters such as reactant type, reactant concentration, and reaction temperature. The organic sulfur (1-dodecanethiol) proved to be a useful sulfur source for synthesizing magic-sized CdS QDs, previously unreported. Several distinctive size regimes of magic-sized quantum dots (MSQDs), including Families 378 and 407, were successfully produced by controlling a small number of factors. The understanding of controlled Cd release in a MSQD formation mechanism is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. S. Li, H. Wang, W. Xu, H. Si, X. Tao, S. Lou, Z. Du, and L.S. Li: Synthesis and assembly of monodisperse spherical Cu2S nanocrystals. J. Colloid Interface Sci. 330, 483 (2009).

    Article  CAS  Google Scholar 

  2. J.D. Wang, S.M. Han, and D.D. Ke: Synthesis and white-light emission character of CdS magic-sized nanocrystals. Chin. Chem. Lett. 23, 1407 (2012).

    Article  Google Scholar 

  3. X. Li, H. Shen, S. Li, J.Z. Niu, H. Wang, and L.S. Li: Investigation of type-II Cu2S-CdS core/shell nanocrystals: Synthesis and characterization. J. Mater. Chem. 20, 923 (2010).

    Article  CAS  Google Scholar 

  4. K. Yu, M. Hu, R. Wang, M. Le Piolet, M. Frotey, M.B. Zaman, X. Wu, D. Leek, Y. Tao, D. Wilkinson, and C. Li: Thermodynamic equilibrium-driven formation of single-sized nanocrystals: Reaction media tuning CdSe magic-sized versus regular quantum dots. J. Phys. Chem. C 114, 3329 (2010).

    Article  CAS  Google Scholar 

  5. B.T. Huy, M. Seo, J. Lim, D. Shin, and Y. Lee: A systematic study on preparing CdS quantum dots. J. Korean Phys. Soc. 59, 3293 (2011).

    Article  CAS  Google Scholar 

  6. W.W. Yu and X. Peng: Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordination solvents: Tunable ractivity of monomers. Angew. Chem., Int. Ed. 41, 2368 (2002).

    Article  CAS  Google Scholar 

  7. Y.C. Cao and J. Wang: One-pot synthesis of high-quality zinc-blende CdS nanocrystals. J. Am. Chem. Soc. 126, 14336 (2004).

    Article  CAS  Google Scholar 

  8. J. Ouyang, J. Kuijper, S. Brot, D. Kingston, X. Wu, D. Leek, M. Hu, J. Ripmeester, and K. Yu: Photoluminescent colloidal CdS nanocrystals with high quality via noninjection one- pot synthesis in 1-octadecene. J. Phys. Chem. C 113, 7579 (2009).

    Article  CAS  Google Scholar 

  9. A. Zane, C. McCracken, D.A. Knight, W.J. Waldman, and P.K. Dutta: Spectroscopic evaluation of the nucleation and growth for microwave-assisted CdSe/CdS/ZnS quantum dot synthesis. J. Phys. Chem. C 118, 22258 (2014).

    Article  CAS  Google Scholar 

  10. M. Zanella, A.Z. Abbasi, A.K. Schaper, and W.J. Parak: Discontinuous growth for II-VI semiconductor nanocrystal from different materials. J. Phys. Chem. C 114, 6205 (2010).

    Article  CAS  Google Scholar 

  11. M. Wang, Y. Wang, A. Tang, X. Li, Y. Hou, and F. Teng: Optical properties and self-assembly of Ag2S nanoparticles synthesized by a one-pot method. Mater. Lett. 88, 108 (2012).

    Article  CAS  Google Scholar 

  12. J. Ouyang, M.B. Zaman, F.J. Yan, D. Johnston, G. Li, X. Wu, D. Leek, C.I. Ratcliffe, J.A. Ripmeester, and K. Yu: Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot synthesis. J. Phys. Chem. C 112, 13805 (2008).

    Article  CAS  Google Scholar 

  13. K. Yu: CdSe magic-sized nuclei, magic-sized nanoclusters and regular nanocrystals: Monomer effects on nucleation and growth. Adv. Mater. 24, 1123 (2012).

    Article  CAS  Google Scholar 

  14. M. Li, J. Ouyang, C. Ratcliffe, L. Pietri, X. Wu, D. Leek, I. Moudrakovski, Q. Lin, B. Yang, and K. Yu: CdS magic-sized nanocrystals exhibiting bright band gap photoemission via thermodynamically driven formation. ACS Nano. 3, 3832 (2009).

    Article  CAS  Google Scholar 

  15. J. Niu, W. Xu, H. Shen, S. Li, H. Wang, and L.S. Li: Synthesis of CdS, ZnS and CdS/ZnS core/shell nanocrystals using dodecanethiol. Bull. Korean Chem. Soc. 33, 393 (2012).

    Article  CAS  Google Scholar 

  16. A. Mandal, A. Dandapat, and G. De: Magic sized ZnS quantum dots as a highly sensitive and selective fluorescence sensor probe for Ag+ ions. Analyst 137, 765 (2012).

    Article  CAS  Google Scholar 

  17. J.S. Son, X.D. Wen, J. Joo, J. Chae, S.I. Baek, K. Park, J.H. Kim, K. An, J.H. Yu, S.G. Kwon, S.H. Choi, Z. Wang, Y.W. Kim, Y. Kuk, R. Hoffmann, and T. Hyeon: Large-scale soft colloidal template synthesis of 1.4 nm thick CdTe nanosheets. Angew. Chem., Int. Ed. 48, 6861 (2009).

    Article  CAS  Google Scholar 

  18. K.N. Lawrence, S. Dolai, P.R. Nimmala, A. Dass, and R. Sardar: Investigation of photophysical and electrochemical properties of magic-sized of CdS nanocrystals. Abstracts of Papers of the American Chemical Society 246, SEP 8, 2013.

  19. V. Pilla, S.R. de Lima, A.A. Andrade, A.C.A. Silva, and N.O. Dantas: Fluorescence quantum efficiency of CdSe/CdS magic-sized quantum dots functionalized with carboxyl or hydroxyl groups. Chem. Phys. Lett. 580, 130 (2013).

    Article  CAS  Google Scholar 

  20. T. Yang, M.M. Lu, X.L. Mao, W.H. Liu, L. Wan, S.D. Miao, and J.Z. Xu: Synthesis of CdS quantum dots (QDs) via a hot-bubbling route and co-sensitized solar cells assembly. Chem. Eng. J. 225, 776 (2013).

    Article  CAS  Google Scholar 

  21. J.S. Son, K. Park, S.G. Kwon, J. Yang, M.K. Choi, J. Kim, J.H. Yu, J. Joo, and T. Hyeon: Dimension-controlled synthesis of CdS nanocrystals: From 0D quantum dots to 2D nanoplates. Small 8, 2394 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Department of Energy (DOE), Office of Science, and Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship program (SULI), and partially by the DOE/NA-22 program and ORNL-LDRD program. We also acknowledge the collaborative assistance provided by Mussie Alemseghed on synthesis lab assistance, as well as John Dunlap and Bamin Khomami on using TEM at the University of Tennessee, Knoxville. Acknowledgment is given to Jong Keum at the Center for Nanophase Materials Sciences (CNMS) for his XRD analysis of our CdS quantum dot samples although the XRD data were not included in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Z. Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dickson, R.E., Hu, M.Z. Chemical synthesis and optical characterization of regular and magic-sized CdS quantum dot nanocrystals using 1-dodecanethiol. Journal of Materials Research 30, 890–895 (2015). https://doi.org/10.1557/jmr.2015.57

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.57

Navigation