Skip to main content
Log in

Effect of a high axial magnetic field on the structure of directionally solidified Al–Si alloys

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of an axial high magnetic field on the growth of the α-Al dendrites and the alignment of the iron-intermetallics (β-AlSiFe phases) in directionally solidified Al–7 wt% Si and Al–7 wt% Si–1 wt% Fe alloys were investigated experimentally. The results showed that the application of a high magnetic field changed the α-Al dendrite morphology significantly. Indeed, a high magnetic field caused the deformation of the α-Al dendrites and induced the occurrence of the columnar-to-equiaxed transition (CET). It was also found that a high magnetic field was capable of aligning the β-AlSiFe phases with the <001>-crystal direction along the solidification direction. Further, the Seebeck thermoelectric signal at the liquid/solid interface in the Al–7 wt% Si alloys was measured in situ and the results indicated that the value of the Seebeck signal was of the order of 10 µV. The modification of the α-Al dendrite morphology under the magnetic field should be attributed to the thermoelectric magnetic force acting on the α-Al dendrites. The magnetization force may be responsible for the alignment of the β-AlSiFe phases under the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. E.L. Rooy: Metals Handbook (ASM International, Materials Park, Ohio, 1988).

    Google Scholar 

  2. S.B. Hassan and V.S. Aigbodion: The effect of thermal ageing on microstructure and mechanical properties of Al-Si-Fe/Mg alloys. J. Alloys Compd. 486, 309 (2009).

    Article  CAS  Google Scholar 

  3. S. Nafisi, D. Emadi, M.T. Shehata, and R. Ghomashchi: Effects of electromagnetic stirring and superheat on the microstructural characteristics of Al-Si-Fe alloy. Mater. Sci. Eng., A 432, 71 (2006).

    Article  Google Scholar 

  4. S. Joseph and S. Kumar: A systematic investigation of fracture mechanisms in Al-Si based eutectic alloy-effect of Si modification. Mater. Sci. Eng., A 588, 111 (2013).

    Article  CAS  Google Scholar 

  5. C.M. Cepeda-Jiménez, A. Orozco-Caballero, J.M. García-Infanta, A.P. Zhilyaev, O.A. Ruano, and F. Carreño: Assessment of homogeneity of the shear-strain pattern in Al-7wt%Si casting alloy processed by high-pressure torsion. Mater. Sci. Eng., A 597, 102 (2014).

    Article  Google Scholar 

  6. P.N. Crepau: Effect of iron in Al-Si casting alloys: A critical review. AFS Trans. 103, 361 (1995).

    Google Scholar 

  7. T.O. Mbuya, B.O. Odera, and S.P. Ng’ang’a: Influence of iron on castability and properties of aluminium silicon alloys: Literature review. Int. J. Cast Met. Res. 16, 451 (2003).

    Article  CAS  Google Scholar 

  8. L. Liu, A.M.A. Mohamed, A.M. Samuel, F.H. Samuel, H.W. Doty, and S. Valtierra: Precipitation of β-Al5FeSi phase platelets in Al-Si based casting alloys. Metall Mater. Trans. A 40A, 2457 (2009).

    Article  CAS  Google Scholar 

  9. A. Gorny, J. Manickaraj, Z.H. Cai, and S. Shankar: Evolution of Fe based intermetallic phases in Al-Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate. J. Alloys Compd. 577, 103 (2013).

    Article  CAS  Google Scholar 

  10. Z.H.I. Sun, M. Guo, J. Vleugels, O. Van der Biest, and B. Blanpain: Strong static magnetic field processing of metallic materials: A review. Curr. Opin. Solid State Mater. Sci. 16, 254 (2012).

    Article  CAS  Google Scholar 

  11. T.P. Hou and K.M. Wu: Alloy carbide precipitation in tempered 2.25 Cr-Mo steel under high magnetic field. Acta Mater. 61, 2016 (2013).

    Article  CAS  Google Scholar 

  12. J. Peng, J.M. Liu, E.G. Wang, and K. Han: The effects of high magnetic field on crystallization of Fe71(Nb0.8Zr0.2)6B23 bulk metallic glass. J. Alloys Compd. 581, 373 (2013).

    Article  Google Scholar 

  13. K.M. Liu, D.P. Lu, H.T. Zhou, Z.B. Chen, A. Atrens, and L. Lua: Influence of a high magnetic field on the microstructure and properties of a Cu-Fe-Ag in situ composite. Mater. Sci. Eng., A 584, 114 (2013).

    Article  CAS  Google Scholar 

  14. L. Li, Z.H. Zhao, Y.B. Zuo, Q.F. Zhu, and J.Z. Cui: Effect of a high magnetic field on the morphological and crystallographic features of primary Al6Mn phase formed during solidification process. J. Mater. Res. 28, 1567 (2013).

    Article  CAS  Google Scholar 

  15. D.A. Molodov, C. Günster, and G. Gottstein: Grain boundary motion and grain growth in zinc in a high magnetic field. J. Mater. Sci. 49, 3875 (2014).

    Article  CAS  Google Scholar 

  16. X. Li, Z.M. Ren, Y. Shen, and Y. Fautrelle: Effect of thermoelectric magnetic force on the array of dendrites during directional solidification of Al-Cu alloys in a high magnetic field. Philos. Mag. Lett. 92(12), 675 (2012).

    Article  CAS  Google Scholar 

  17. X. Li, Y. Fautrelle, and Z.M. Ren: Morphological instability of cell and dendrite during directional solidification under a high magnetic field. Acta Mater. 56, 3146 (2008).

    Article  CAS  Google Scholar 

  18. D.H. Matheson, M.S. Wargo, D. Motakef, J. Carlson, and A. Nakos: Dopant segregation during vertical Bridgman-Stockbarger growth with melt stabilization by strong axial magnetic fields. J. Cryst. Growth 85, 557 (1987).

    Article  Google Scholar 

  19. G.D. Robertson and D. O’Connor: Magnetic field effects on float-zone Si crystal growth: II. Strong transverse fields. J. Cryst. Growth 76, 100 (1986).

    Article  CAS  Google Scholar 

  20. H.P. Utech and M.C. Flemings: Elimination of solute banding in indium antimonide crystal by growth in a magnetic field. J. Appl. Phys. 37, 2021 (1966).

    Article  CAS  Google Scholar 

  21. J.J. Shercliff: Thermoelectric magnetohydrodynamics. J. Fluid Mech. 91, 231 (1979).

    Article  CAS  Google Scholar 

  22. P. Lehmann, R. Moreau, D. Camel, and R. Bolcato: Modification of interdendritic convection in directional solidification by a uniform magnetic field. Acta Mater. 46, 4067 (1998).

    Article  CAS  Google Scholar 

  23. J.J. Favier, J.P. Garandet, A. Rouzaud, and D. Camel: Mass transport phenomena during solidification in microgravity; preliminary results of the first mephisto flight experiment. J. Cryst. Growth 140, 237 (1996).

    Article  Google Scholar 

  24. S. Sen, B.K. Dhindaw, P.A. Curreri, P. Peters, and W.F. Kaukler: Measurement of interfacial undercooling in a dilute Pb-Sn alloy near the regime of morphological instability. J. Cryst. Growth 193, 692 (1998).

    Article  CAS  Google Scholar 

  25. J. Pilling and A. Hellawell: Mechanical deformation of dendrites by fluid flow. Metall. Mater. Trans. A 27, 229 (1996).

    Article  Google Scholar 

  26. B. Billia, N. Bergeon, H. Ngyuen Thi, H. Jamgotchian, J. Gastaldi, and G. Grange: Cumulative mechanical moments and microstructure deformation induced by growth shape in columnar solidification. Phys. Rev. Lett. 93, 126105 (2004).

    Article  Google Scholar 

  27. H. Morikawa, K. Sassa, and S. Asai: Control of precipitating phase alignment and crystal orientation by imposition of a high magnetic field. Mater. Trans., JIM 39, 814 (1998).

    Article  CAS  Google Scholar 

  28. T. Sugiyama, M. Tahashi, K. Sassa, and S. Asai: The control of crystal orientation in non-magnetic metals by imposition of a high magnetic field. ISIJ Int. 43, 855 (2003).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported partly by the European Space Agency through the Bl-inter 09_473220, National Natural Science Foundation of China (Nos. 51271109 and 51171106), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, D., Lu, Z., Gagnoud, A. et al. Effect of a high axial magnetic field on the structure of directionally solidified Al–Si alloys. Journal of Materials Research 30, 1043–1055 (2015). https://doi.org/10.1557/jmr.2015.55

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.55

Navigation