Abstract
In this article, we have explored the interface states that form between the channel of a monolayer MoS2 transistor and a high-κ gate dielectric. These interface states lead to large hysteresis in the drain current versus gate voltage characteristic or the so-called transfer characteristic of the transistor. By applying carefully designed pulses to the gate of the transistor, we show that it is possible to both understand the nature of the interface states and minimize the hysteresis, so that the transfer characteristic can be reliably used for subsequent extraction of material parameters such as mobility.
Similar content being viewed by others
References
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012).
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004).
K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010).
T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, and Q. Niu: Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).
H. Liu, A.T. Neal, and P.D. Ye: Channel length scaling of MoS2 MOSFETs. ACS Nano 6(10), 8563–8569 (2012).
Y. Yoon, K. Ganapathi, and S. Salahuddin: How good can monolayer MoS2 transistors be?. Nano Lett. 11(9), 3768–3773 (2011).
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis: Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011).
S. Kim, A. Konar, W.S. Hwang, J.H. Lee, J. Lee, J. Yang, and C. Jung: High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012).
M.M. Perera, M.W. Lin, H.J. Chuang, B.P. Chamlagain, C. Wang, X. Tan, M.M.C. Cheng, D. Tománek, and Z. Zhou: Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7(5), 4449–4458 (2013).
S. Das, H.Y. Chen, A.V. Penumatcha, and J. Appenzeller: High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13(1), 100–105 (2012).
H.Y. Chang, S. Yang, J. Lee, L. Taom, W.-S. Hwang, D. Jena, N. Lu, and D. Akinwande: High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7(6), 5446–5452 (2013).
D.J. Late, B. Liu, H.S.S.R. Matte, V.P. Dravid, and C.N.R. Rao: Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6(6), 5635–5641 (2012).
T. Li, G. Du, B. Zhang, and Z. Zeng: Scaling behavior of hysteresis in multilayer MoS2 field effect transistors. Appl. Phys. Lett. 105(9), 093107 (2014).
S. Ghatak, A.N. Pal, and A. Ghosh: Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5(10), 7707–7712 (2011).
Y. Guo, X. Wei, J. Shu, B. Liu, J. Yin, C. Guan, Y. Han, S. Gao, and Q. Chen: Charge trapping at the MoS2–SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors. Appl. Phys. Lett. 106(10): 103109 (2015).
K. Cho, W. Park, J. Park, H. Jeong, J. Jang, T.-Y. Kim, W.-K. Hong, S. Hong, and T. Lee: Electric stress-induced threshold voltage instability of multilayer MoS2 field effect transistors. ACS Nano 7(9), 7751–7758 (2013).
G.H. Lee, Y.J. Yu, X. Cui, N. Petrone, C.-H. Lee, M.S. Choi, and D.-Y. Lee: Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7(9), 7931–7936 (2013).
M.M. Benameur, B. Radisavljevic, J.S. Heron, S. Sahoo, H. Berger, and A. Kis: Visibility of dichalcogenide nanolayers. Nanotechnology 22(12), 125706 (2011).
W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee: Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 13(5), 1983–1990 (2013).
Y. Taur and T.H. Ning: Fundamentals of Modern VLSI Devices (Cambridge University Press, New York, 2009).
K. Choi, S.R.A. Raza, H.S. Lee, P.J. Jeon, A. Pezeshki, S.-W. Min, and J.S. Kim: Trap density probing on top-gate MoS2 nanosheet field-effect transistors by photo-excited charge collection spectroscopy. Nanoscale 7(13), 5617–5623 (2015).
D. Estrada, S. Dutta, A. Liao, and E. Pop: Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization. Nanotechnology 21(8), 085702 (2010).
M. Mattmann, C. Roman, T. Helbling, D. Bechstein, L. Durrer, R. Pohle, M. Fleischer, and C. Hierold: Pulsed gate sweep strategies for hysteresis reduction in carbon nanotube transistors for low concentration NO2 gas detection. Nanotechnology 21(18), 185501 (2010).
Z. Liu, Z.J. Qiu, Z.B. Zhang, L.-R. Zheng, and S.-L. Zhang: Mobility extraction for nanotube TFTs. IEEE Electron Device Lett. 32(7), 913–9152011.
ACKNOWLEDGMENTS
This work was supported in part by the AFOSR YIP #FA9550-13-l-0114, the ARO YIP # W911 NF‐13‐1‐0224 and the NSF CAREER Award No. CCF‐1149804.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lu, Z., Lee, O., Wong, J.C. et al. Surface states in a monolayer MoS2 transistor. Journal of Materials Research 31, 911–916 (2016). https://doi.org/10.1557/jmr.2015.405
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2015.405