Skip to main content
Log in

Surface states in a monolayer MoS2 transistor

  • Invited Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this article, we have explored the interface states that form between the channel of a monolayer MoS2 transistor and a high-κ gate dielectric. These interface states lead to large hysteresis in the drain current versus gate voltage characteristic or the so-called transfer characteristic of the transistor. By applying carefully designed pulses to the gate of the transistor, we show that it is possible to both understand the nature of the interface states and minimize the hysteresis, so that the transfer characteristic can be reliably used for subsequent extraction of material parameters such as mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012).

    Article  CAS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004).

    Article  CAS  Google Scholar 

  3. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010).

    Article  Google Scholar 

  4. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, and Q. Niu: Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).

    Article  Google Scholar 

  5. H. Liu, A.T. Neal, and P.D. Ye: Channel length scaling of MoS2 MOSFETs. ACS Nano 6(10), 8563–8569 (2012).

    Article  CAS  Google Scholar 

  6. Y. Yoon, K. Ganapathi, and S. Salahuddin: How good can monolayer MoS2 transistors be?. Nano Lett. 11(9), 3768–3773 (2011).

    Article  CAS  Google Scholar 

  7. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis: Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011).

    Article  CAS  Google Scholar 

  8. S. Kim, A. Konar, W.S. Hwang, J.H. Lee, J. Lee, J. Yang, and C. Jung: High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012).

    Article  Google Scholar 

  9. M.M. Perera, M.W. Lin, H.J. Chuang, B.P. Chamlagain, C. Wang, X. Tan, M.M.C. Cheng, D. Tománek, and Z. Zhou: Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7(5), 4449–4458 (2013).

    Article  CAS  Google Scholar 

  10. S. Das, H.Y. Chen, A.V. Penumatcha, and J. Appenzeller: High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13(1), 100–105 (2012).

    Article  Google Scholar 

  11. H.Y. Chang, S. Yang, J. Lee, L. Taom, W.-S. Hwang, D. Jena, N. Lu, and D. Akinwande: High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7(6), 5446–5452 (2013).

    Article  CAS  Google Scholar 

  12. D.J. Late, B. Liu, H.S.S.R. Matte, V.P. Dravid, and C.N.R. Rao: Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6(6), 5635–5641 (2012).

    Article  CAS  Google Scholar 

  13. T. Li, G. Du, B. Zhang, and Z. Zeng: Scaling behavior of hysteresis in multilayer MoS2 field effect transistors. Appl. Phys. Lett. 105(9), 093107 (2014).

    Article  Google Scholar 

  14. S. Ghatak, A.N. Pal, and A. Ghosh: Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5(10), 7707–7712 (2011).

    Article  CAS  Google Scholar 

  15. Y. Guo, X. Wei, J. Shu, B. Liu, J. Yin, C. Guan, Y. Han, S. Gao, and Q. Chen: Charge trapping at the MoS2–SiO2 interface and its effects on the characteristics of MoS2 metal-oxide-semiconductor field effect transistors. Appl. Phys. Lett. 106(10): 103109 (2015).

    Article  Google Scholar 

  16. K. Cho, W. Park, J. Park, H. Jeong, J. Jang, T.-Y. Kim, W.-K. Hong, S. Hong, and T. Lee: Electric stress-induced threshold voltage instability of multilayer MoS2 field effect transistors. ACS Nano 7(9), 7751–7758 (2013).

    Article  CAS  Google Scholar 

  17. G.H. Lee, Y.J. Yu, X. Cui, N. Petrone, C.-H. Lee, M.S. Choi, and D.-Y. Lee: Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7(9), 7931–7936 (2013).

    Article  CAS  Google Scholar 

  18. M.M. Benameur, B. Radisavljevic, J.S. Heron, S. Sahoo, H. Berger, and A. Kis: Visibility of dichalcogenide nanolayers. Nanotechnology 22(12), 125706 (2011).

    Article  CAS  Google Scholar 

  19. W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee: Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 13(5), 1983–1990 (2013).

    Article  CAS  Google Scholar 

  20. Y. Taur and T.H. Ning: Fundamentals of Modern VLSI Devices (Cambridge University Press, New York, 2009).

    Book  Google Scholar 

  21. K. Choi, S.R.A. Raza, H.S. Lee, P.J. Jeon, A. Pezeshki, S.-W. Min, and J.S. Kim: Trap density probing on top-gate MoS2 nanosheet field-effect transistors by photo-excited charge collection spectroscopy. Nanoscale 7(13), 5617–5623 (2015).

    Article  CAS  Google Scholar 

  22. D. Estrada, S. Dutta, A. Liao, and E. Pop: Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization. Nanotechnology 21(8), 085702 (2010).

    Article  Google Scholar 

  23. M. Mattmann, C. Roman, T. Helbling, D. Bechstein, L. Durrer, R. Pohle, M. Fleischer, and C. Hierold: Pulsed gate sweep strategies for hysteresis reduction in carbon nanotube transistors for low concentration NO2 gas detection. Nanotechnology 21(18), 185501 (2010).

    Article  CAS  Google Scholar 

  24. Z. Liu, Z.J. Qiu, Z.B. Zhang, L.-R. Zheng, and S.-L. Zhang: Mobility extraction for nanotube TFTs. IEEE Electron Device Lett. 32(7), 913–9152011.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by the AFOSR YIP #FA9550-13-l-0114, the ARO YIP # W911 NF‐13‐1‐0224 and the NSF CAREER Award No. CCF‐1149804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayeef Salahuddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Lee, O., Wong, J.C. et al. Surface states in a monolayer MoS2 transistor. Journal of Materials Research 31, 911–916 (2016). https://doi.org/10.1557/jmr.2015.405

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.405

Navigation