Skip to main content
Log in

Low temperature photoluminescence spectroscopy studies on sputter deposited CdS/CdTe junctions and solar cells

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Device quality CdS/CdTe heterostructures and completed solar cells (∼12% efficient) have been studied using photoluminescence (PL) as a function of temperature and laser excitation power. The CdS/CdTe junctions were grown on transparent conducting oxide covered soda lime glass using radio frequency sputter deposition. In the current work we found that the PL spectra of sputtered and thermally evaporated CdTe absorber films share common features. It was found that the luminescence shifts from being dominated by sub-gap defect-mediated emission at lower excitation powers to near band edge excitonic emission at higher excitation powers. It was found that the presence of Cu suppresses the sub-band gap PL emissions. This effect was concluded to be due either to Cu occupying cadmium vacancies (VCd) or forming acceptor complexes with them. This points to a potential role of Cu in eliminating sub-band gap recombination routes and hence increasing the charge separation ability of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. First Solar: First Solar, press release, 5 February 2015. at http://investor.firstsolar.com/releasedetail.cfm?ReleaseID=895118.

  2. T. Okamoto, A. Yamada, and M. Konagai: Optical and electrical characterizations of highly efficient CdTe thin film solar cells. Thin Solid Films 387, 6–10 (2001).

    Article  CAS  Google Scholar 

  3. D. Halliday, J. Eggleston, and K. Durose: A photoluminescence study of polycrystalline thin-film CdTe/CdS solar cells. J. Cryst. Growth 186, 543–549 (1998).

    Article  CAS  Google Scholar 

  4. S. Vatavu, H. Zhao, I. Caraman, P. Gaşin, and C. Ferekides: The copper influence on the PL spectra of CdTe thin film as a component of the CdS/CdTe heterojunction. Thin Solid Films 517, 2195–2201 (2009).

    Article  CAS  Google Scholar 

  5. T. Taguchi, J. Shirafuji, and Y. Inuishi: Edge and donor-acceptor pair emissions in cadmium telluride. Jpn. J. Appl. Phys. 12, 1558–1566 (1973).

    Article  CAS  Google Scholar 

  6. C. Li, Y. Wu, J. Poplawsky, T.J. Pennycook, N. Paudel, W. Yin, S.J. Haigh, M.P. Oxley, A.R. Lupini, M. Al-Jassim, S.J. Pennycook, and Y. Yan: Grain-boundary-enhanced carrier collection in CdTe solar cells. Phys. Rev. Lett. 112, 156103 (2014).

    Article  Google Scholar 

  7. H.R. Moutinho, M.M. Al-Jassim, D.H. Levi, P.C. Dippo, and L.L. Kazmerski: Effects of CdCl2 treatment on the recrystallization and electro-optical properties of CdTe thin films. J. Vac. Sci. Technol. A 16, 1251–1257 (1998).

    Article  CAS  Google Scholar 

  8. H.C. Chou, A. Rohatgi, E.W. Thomas, S. Kamra, and A.K. Bhat: Effects of Cu on CdTe/CdS heterojunction solar cells with Au/Cu contacts. J. Electrochem. Soc. 142, 254–259 (1995).

    Article  CAS  Google Scholar 

  9. N.C. Giles-Taylor, R.N. Bicknell, D.K. Blanks, T.H. Myers, and J.F. Schetzina: Photoluminescence of CdTe: A comparison of bulk and epitaxial material. J. Vac. Sci. Technol. A 3, 76–82 (1985).

    Article  CAS  Google Scholar 

  10. J. Aguilar-Hernández, G. Contreras-Puente, J.M. Figueroa-Estrada, and O. Zelaya-Angel: Photoluminescence studies of semiconducting polycrystalline CdTe films. Jpn. J. Appl. Phys. 33, 37–41 (1994).

    Article  Google Scholar 

  11. Z.C. Feng, A. Mascarenhas, and W.J. Choyke: Low temperature photoluminescence spectra of (001) CdTe films grown by molecular beam epitaxy at different substrate temperatures. J. Lumin. 35, 329–341 (1986).

    Article  CAS  Google Scholar 

  12. D. Grecu and A.D. Compaan: Photoluminescence study of Cu diffusion and electromigration in CdTe. Appl. Phys. Lett. 75, 361–363 (1999).

    Article  CAS  Google Scholar 

  13. I. Visoly-Fisher, S.R. Cohen, A. Ruzin, and D. Cahen: How polycrystalline devices can outperform single-crystal ones: Thin film CdTe/CdS solar cells. Adv. Mater. 16, 879–883 (2004).

    Article  CAS  Google Scholar 

  14. M. Tuteja, P. Koirala, S. MacLaren, R. Collins, and A. Rockett: Direct observation of electrical properties of grain boundaries in sputter-deposited CdTe using scan-probe microwave reflectivity based capacitance measurements. Appl. Phys. Lett. 107, 142106 (2015).

    Article  Google Scholar 

  15. V.V. Plotnikov, A.C. Vasko, A.D. Compaan, X. Liu, K.A. Wieland, R.M. Zeller, J. Li, and R.W. Collins: Magnetron sputtering for II-VI solar cells: Thinning the CdTe. MRS Online Proc. Libr. 1165, 1165–M09–01 (2009).

    Article  Google Scholar 

  16. S. Vatavu, H. Zhao, V. Padma, R. Rudaraju, D.L. Morel, P. Gaşin, I. Caraman, and C.S. Ferekides: Photoluminescence studies of CdTe films and junctions. Thin Solid Films 515, 6107–6111 (2007).

    Article  CAS  Google Scholar 

  17. T. Okamoto, Y. Matsuzaki, N. Amin, A. Yamada, and M. Konagai: Characterization of highly efficient CdTe thin film solar cells by low-temperature photoluminescence. Jpn. J. Appl. Phys. 37, 3894–3899 (1998).

    Article  CAS  Google Scholar 

  18. M. Shao, A. Fischer, D. Grecu, U. Jayamaha, E. Bykov, G. Contreras-Puente, R.G. Bohn, and A.D. Compaan: Radio-frequency-magnetron-sputtered CdS/CdTe solar cells on soda-lime glass. Appl. Phys. Lett. 69, 3045–3047 (1996).

    Article  CAS  Google Scholar 

  19. P. Koirala, X. Tan, J. Li, N.J. Podraza, S. Marsillac, A.A. Rockett, and R.W. Collins: Mapping spectroscopic ellipsometry of CdTe solar cells for property-performance correlations. In 40th IEEE Photovoltaic Specialists Conference (IEEE: Denver, 2014); pp. 0674–0679. doi: https://doi.org/10.1109/PVSC.2014.6925011.

    Google Scholar 

  20. M.A. Green, A. Ho-Baillie, and H.J. Snaith: The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014).

    Article  CAS  Google Scholar 

  21. R.E. Pauls and L.B. Rogers: Band broadening studies using parameters for an exponentially modified Gaussian. Anal. Chem. 49, 625–628 (1977).

    Article  CAS  Google Scholar 

  22. W.W. Yau: Characterizing skewed chromatographic band broadening. Anal. Chem. 49, 395–398 (1977).

    Article  CAS  Google Scholar 

  23. T. Schmidt, K. Lischka, and W. Zulehner: Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 45, 8989–8994 (1992).

    Article  CAS  Google Scholar 

  24. J. Krustok, H. Collan, and K. Hjelt: Does the low-temperature Arrhenius plot of the photoluminescence intensity in CdTe point towards an erroneous activation energy?J. Appl. Phys. 81, 1442–1445 (1997).

    Article  CAS  Google Scholar 

  25. D.T.F. Marple: Effective electron mass in CdTe. Phys. Rev. 129, 2466–2470 (1963).

    Article  CAS  Google Scholar 

  26. M.A. Berding: Native defects in CdTe. Phys. Rev. B 60, 8943–8950 (1999).

    Article  CAS  Google Scholar 

  27. I. Strzalkowski, S. Joshi, and C.R. Crowell: Dielectric constant and its temperature dependence for GaAs, CdTe, and ZnSe. Appl. Phys. Lett. 28, 350–352 (1976).

    Article  CAS  Google Scholar 

  28. J. Camassel, D. Auvergne, H. Mathieu, R. Triboulet, and Y. Marfaing: Temperature dependance of the fundamental absorption edge in CdTe. Solid State Commun. 13, 63–68 (1973).

    Article  CAS  Google Scholar 

  29. M.J. Romero, D.S. Albin, M.M. Al-Jassim, X. Wu, H.R. Moutinho, and R.G. Dhere: Cathodoluminescence of Cu diffusion in CdTe thin films for CdTe/CdS solar cells. Appl. Phys. Lett. 81, 2962–2964 (2002).

    Article  CAS  Google Scholar 

  30. D.M. Hofmann, P. Omling, H.G. Grimmeiss, B.K. Meyer, K.W. Benz, and D. Sinerius: Identification of the chlorine A center in CdTe. Phys. Rev. B 45, 6247–6250 (1992).

    Article  CAS  Google Scholar 

  31. J. Aguilar-Hernandez, G. Contreras-Puente, H. Flores-Llamas, H. Yee-Madeira, and O. Zelaya-Angel: The temperature-dependence of the energy band gap of CSVT-grown CdTe films determined by photoluminescence. J. Phys. D: Appl. Phys. 28, 1517 (1995).

    Article  CAS  Google Scholar 

  32. K.M. James, J.L. Merz, and C.E. Jones: Luminescence study of copper‐implanted and rapid‐thermal‐annealed cadmium telluride. J. Vac. Sci. Technol. A 6, 2664–2669 (1988).

    Article  CAS  Google Scholar 

  33. J.P. Laurenti, G. Bastide, M. Rouzeyre, and R. Triboulet: Localized defects in p-CdTe:Cu doped by copper incorporation during Bridgman growth. Solid State Commun. 67, 1127–1130 (1988).

    Article  CAS  Google Scholar 

  34. K.K. Chin, T.A. Gessert, and S-H. Wei: The roles of CU impurity states in CdTe thin film solar cells. In 35th IEEE Photovoltaic Specialists Conference (IEEE: Honolulu, 2010); pp. 001915–001918. doi: https://doi.org/10.1109/PVSC.2010.5616379.

    Google Scholar 

  35. G. Zoth, F.G. Ridel, and W. Schröter: Pairing between fast diffusing donors and Shallow acceptors in p-CdTe. Phys. Status Solidi B 172, 187–192 (1992).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge Allen Hall for useful discussions and help in experimentation. The financial support from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (Contract DE-EE0005405) is greatly appreciated. This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Tuteja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuteja, M., Koirala, P., Soares, J. et al. Low temperature photoluminescence spectroscopy studies on sputter deposited CdS/CdTe junctions and solar cells. Journal of Materials Research 31, 186–194 (2016). https://doi.org/10.1557/jmr.2015.399

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.399

Navigation