Skip to main content
Log in

Visible Raman spectroscopy of carbon films synthesized by ion-plasma sputtering of graphite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The article discusses the structure and properties of noncrystalline carbon films synthesized by ion-plasma sputtering of a graphite target in an argon atmosphere at direct current. Analysis of the molecular structure of carbon films was performed using Raman spectroscopy and dependence of the structure of synthesized films on the synthesis temperature and substrate material was revealed. Besides the main G peak possesses the values in a broad frequency range from 1500 to 1575 cm−1. The evolution of molecular structure peculiarities of synthesized carbon films depending on the synthesis conditions was clearly shown using the numerical methods of the Raman spectra decomposition. Studies of the optical spectra showed that the band gap of synthesized films varies from 0.78 to 1.67 eV and with increasing optical band gap, the value of G peak position decreases under laser excitation of 2.62 and 1.96 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. R. Setton, P. Bernier, and S. Lefrant: Carbon Molecules and Materials (Taylor & Francis Inc., USA and Canada, 2002); p. 49.

    Book  Google Scholar 

  2. J. Tersoff and R.S. Ruoff: RS structural properties of a carbon-nanotube crystal. Phys. Rev. Lett. 73(5), 676 (1994).

    Article  CAS  Google Scholar 

  3. J.L. Delgado, A. Herranz, and N.J. Martın, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim: The nano-forms of carbon. Mater. Chem. 18, 1417 (2008).

    Article  CAS  Google Scholar 

  4. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).

    Article  CAS  Google Scholar 

  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005).

    Article  CAS  Google Scholar 

  6. M.I. Katsnelson: Zitterbewegung, chirality, and minimal conductivity in graphene. Eur. Phys. J. B 51, 157 (2006).

    Article  CAS  Google Scholar 

  7. S. Bhattacharyya and S.R.P. Silva: Transport properties of low-dimensional amorphous carbon films. Thin Solid Films 482, 94 (2005).

    Article  CAS  Google Scholar 

  8. S.V. Morozov, K.S. Novoselov, and A.K. Geim: Electron transport in graphene. Usp. Fiz. Nauk 178(7), 776 (2008).

    Article  Google Scholar 

  9. S. Wang, J. Zhu, J. Wang, X. Yin, and X. Han: Raman spectroscopy and mechanical properties of multilayer tetrahedral amorphous carbon films. Thin Solid Films 519, 4906 (2011).

    Article  CAS  Google Scholar 

  10. Y. Miyajima, J.M. Shannon, S.J. Henley, V. Stolojan, D.C. Cox, and S.R.P. Silva: Electrical conduction mechanism in laser deposited amorphous carbon. Thin Solid Films 516, 257 (2007).

    Article  CAS  Google Scholar 

  11. J. Filik, P.W. May, S.R.J. Pearce, R.K. Wild, and K.R. Hallam: XPS and laser Raman analysis of hydrogenated amorphous carbon films. Diamond Relat. Mater. 12, 974 (2003).

    Article  CAS  Google Scholar 

  12. C. Casiraghi, A.C. Ferrari, and J. Robertson: Raman spectroscopy of hydrogenated amorphous carbons. Phys. Rev. B 72, 085401 (2005).

    Article  Google Scholar 

  13. K.W.R. Gilkes, H.S. Sands, D.N. Batchelder, J. Robertson, and W.I. Milne: Direct observation of sp3 bonding in tetrahedral amorphous carbon using ultraviolet Raman spectroscopy. Appl. Phys. Lett. 70(15), 1980 (1997).

    Article  CAS  Google Scholar 

  14. A.A. Babaev, S.B. Sultanov, M.Sh. Abdulvagabov, and E.I. Terukov: Electrical, optical and mechanical properties of amorphous hydrogenated carbon obtained under different conditions of deposition. Fiz. Tekh. Poluprovodn. 45(1), 120 (2011).

    Google Scholar 

  15. V.L. Merkulov, J.S. Lannin, C.H. Munro, S.A. Asher, V.S. Veerasamy, and W.I. Milne: UV studies of tetrahedral bonding in diamondlike amorphous carbon. Phys. Rev. Lett. 78(25), 4869 (1997).

    Article  CAS  Google Scholar 

  16. J. Robertson: Hard amorphous (diamond-like) carbons. Mater. Sci. Eng., R 37, 129 (2002).

    Article  Google Scholar 

  17. N. Paik: Raman and XPS studies of DLC films prepared by a magnetron sputter-type negative ion source. Surf. Coat. Technol. 200, 2170 (2005).

    Article  CAS  Google Scholar 

  18. A.C. Ferrari and J. Robertson: Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414 (2001).

    Article  Google Scholar 

  19. A.C. Ferrari and J. Robertson: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095 (2000).

    Article  CAS  Google Scholar 

  20. Sh.Sh. Sarsembinov, O.Yu. Prikhodko, A.P. Ryaguzov, S.Ya. Maksimova, Ye.A. Daineko, and F.A. Mahmoud: Electronic properties of diamond-like carbon films modified by silver nanoclusters. Phys. Status Solidi C 7, 805 (2010).

    CAS  Google Scholar 

  21. S.M. Huang, Z. Sun, Y.F. Lu, and M.H. Hong: Ultraviolet and visible Raman spectroscopy characterization of diamond–like carbon film growth by pulsed laser deposition. Appl. Phys. A 74, 519 (2002).

    Article  CAS  Google Scholar 

  22. J. Wagner, M. Ramsteiner, Ch. Wild, and P. Koidl: Resonant Raman scattering of amorphous carbon and polycrystalline diamond films. Phys. Rev. B 40, 1817 (1989).

    Article  CAS  Google Scholar 

  23. N. Savvides and N.J. Bell: Microhardness and Young’s modulus of diamond and diamondlike carbon films. J. Appl. Phys. 72(7), 2791 (1992).

    Article  CAS  Google Scholar 

  24. M.A. Tamor and W.C. Vassell: Raman “fingerprinting” of amorphous carbon films. J. Appl. Phys. 76(6), 3823 (1994).

    Article  CAS  Google Scholar 

  25. F. Tuinstra and J.L. Koening: Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970).

    Article  CAS  Google Scholar 

  26. W. Windl, P. Pavone, K. Karch, O. Shutt, D. Strauch, P. Giannozzi, and S. Baroni: Second-order Raman spectra of diamond from ab initio phonon calculations. Phys. Rev. B 48, 3164 (1993).

    Article  CAS  Google Scholar 

  27. S. Prawer, K.W. Nugent, Y. Lifshits, G.D. Lempert, E. Grossman, J. Kulik, I. Avigal, and R. Kalish: Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition. Diamond Relat. Mater. 5, 433 (1996).

    Article  CAS  Google Scholar 

  28. A.C. Ferrari and J. Robertson: Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos. Trans. R. Soc., A 362, 2477 (2004).

    Article  CAS  Google Scholar 

  29. J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S.R.P. Silva: Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 80, 440 (1996).

    Article  CAS  Google Scholar 

  30. A.C. Ferrari and J. Robertson: Origin of the 1150-cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63, 121405–1 (2001).

    Article  Google Scholar 

  31. J. Tauc: Optical properties of semiconductors in the visible and ultra-violet ranges. Prog. Semicond. 9, 89 (1965).

    Google Scholar 

  32. M. Chhowalla, J. Robertson, C.W. Chen, S.R.P. Silva, C.A. Davis, G.A.J. Amaratunga, and W.I. Milne: Influence of ion energy and substrate temperature on the optical and electronic properties of tetrahedral amorphous carbon (ta-C) films. J. Appl. Phys. 81(1), 139 (1997).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the grant of Ministry of Education and Science of the Republic of Kazakhstan No.1094/GF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander P. Ryaguzov or Renata R. Nemkayeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryaguzov, A.P., Yermekov, G.A., Nurmamytov, T.E. et al. Visible Raman spectroscopy of carbon films synthesized by ion-plasma sputtering of graphite. Journal of Materials Research 31, 127–136 (2016). https://doi.org/10.1557/jmr.2015.391

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.391

Navigation