Skip to main content
Log in

Superfluous oxygen diffusion induced amorphization of ZrC0.6O0.4 and transformation of amorphous layer under electron beam irradiation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

On the powder surface of oxygen-ordered ZrC0.6O0.4 obtained via isothermal heating of vacancy-ordered ZrC0.6 at 300 °C, an amorphous ZrC0.6Oy >0.4 layer in nanoscaled thickness is found to form if the heating lasts long enough. With the help of high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) measurements, the amorphous formation is recognized to originate from diffusion of superfluous oxygen atoms into Zr-tetrahedral centers in the surface area, thus leading to severe distortion of the lattice. In situ investigation of HRTEM, SAED, and electron energy loss spectra demonstrates that under electron irradiation of sufficient dose, the amorphous ZrC0.6Oy >0.4 layer transforms into a cubic ZrO2− x layer with the same orientation as the underlying ordered ZrC0.6O0.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. H.O. Pierson: Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications (William Andrew/Noyes, New Jersey, 1996).

    Google Scholar 

  2. R.V. Sara: The system zirconium-carbon. J. Am. Ceram. Soc. 48, 243–247 (1965).

    CAS  Google Scholar 

  3. L.E. Toth: Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).

    Google Scholar 

  4. S.T. Oyama: The Chemistry of Transition Metal Carbides and Nitrides (Blackie Academic & Professional, Glasgow, 1996).

    Google Scholar 

  5. T. Ogawa and K. Ikawa: Diffusion of metal fission products in zirconium carbide ZrC1. J. Nucl. Mater. 105, 331–334 (1982).

    CAS  Google Scholar 

  6. G.A. Rama Rao and V. Venugopal: Kinetics and mechanism of the oxidation of ZrC. J. Alloys Compd. 206, 237–242 (1994).

    CAS  Google Scholar 

  7. S. Shimada, M. Inagaki, and M. Suzuki: Microstructural observation of the ZrC/ZrO2 interface formed by oxidation of ZrC. J. Mater. Res. 11, 2594–2597 (1996).

    CAS  Google Scholar 

  8. S. Shimada: Oxidation and mechanism of single crystal carbides with formation of carbon. J. Ceram. Soc. Jpn. 109, S33–S42 (2001).

    CAS  Google Scholar 

  9. S. Shimada: A thermoanalytical study on the oxidation of ZrC and HfC powders with formation of carbon. Solid State Ionics 149, 319–326 (2002).

    CAS  Google Scholar 

  10. S. Shimada: TEM observation of the ZrC/ZrO2 interface formed by oxidation of ZrC single crystals. J. Mater. Synth. Process. 6, 191–195 (1998).

    CAS  Google Scholar 

  11. A. Bellucci, D. Gozzi, T. Kimura, T. Noda, and S. Otani: Zirconia growth on zirconium carbide single crystals by oxidation. Surf. Coat. Technol. 197, 294–302 (2005).

    CAS  Google Scholar 

  12. D. Gozzia, M. Montozzi, and P.L. Cignini: Oxidation kinetics of refractory carbides at low oxygen partial pressures. Solid State Ionics 123, 11–18 (1999).

    Google Scholar 

  13. J.A. Rodriguez, P. Liu, J. Gomes, K. Nakamura, F. Viñes, C. Sousa, and F. Illas: Interaction of oxygen with ZrC(001) and VC(001): Photoemission and first-principles studies. Phys. Rev. B 72, 075427–1–11 (2005).

    Google Scholar 

  14. K. Edamoto, T. Nagayama, K. Ozawa, and S. Otani: Angle-resolved and resonant photoemission study of the ZrO-like film on ZrC(100). Surf. Sci. 601, 5077–5082 (2007).

    CAS  Google Scholar 

  15. K.L. Håkansson, H.I.P. Johansson, and L.I. Johansson: High-resolution core-level study of ZrC(100) and its reaction with oxygen. Phys. Rev. B 48, 2623–2626 (1993).

    Google Scholar 

  16. A.I. Gusev: Order–disorder transformations and phase equilibria in strongly nonstoichiometric compounds. Phys.-Usp. 43, 1–37 (2000).

    CAS  Google Scholar 

  17. J.Y. Xiang, S.C. Liu, W.T. Hu, Y. Zhang, C.K. Chen, P. Wang, J.L. He, D.L. Yu, B. Xu, Y.F. Lu, Y.J. Tian, and Z.Y. Liu: Mechanochemically activated synthesis of zirconium carbide nanoparticles at room temperature: A simple route to prepare nanoparticles of transition metal carbides. J. Eur. Ceram. Soc. 31, 1491–1496 (2011).

    CAS  Google Scholar 

  18. W.T. Hu, J.Y. Xiang, Y. Zhang, S.C. Liu, C.K. Chen, P. Wang, H.T. Wang, F.S. Wen, B. Xu, J.L. He, D.L. Yu, Y.J. Tian, and Z.Y. Liu: Superstructural nanodomains of ordered carbon vacancies in nonstoichiometric ZrC0.61. J. Mater. Res. 27, 1230–1236 (2012).

    CAS  Google Scholar 

  19. W.T. Hu, S.C. Liu, Y. Zhang, C.K. Chen, J.Y. Xiang, P. Wang, H.T. Wang, F.S. Wen, B. Xu, J.L. He, D.L. Yu, Y.J. Tian, and Z.Y. Liu: Low-temperature diffusion of oxygen through ordered carbon vacancies in Zr2Cx: The formation of ordered Zr2CxOy. Inorg. Chem. 51, 5164–5172 (2012).

    CAS  Google Scholar 

  20. S. Shimada and M. Kozeki: Oxidation of TiC at low temperatures. J. Mater. Sci. 27, 1869–1875 (1992).

    CAS  Google Scholar 

  21. S. Shimada and T. Ishii: Oxidation kinetics of zirconium carbide at relatively low temperatures. J. Am. Ceram. Soc. 73, 2804–2808 (1990).

    CAS  Google Scholar 

  22. S.C. Singhal: Oxidation kinetics of hot-pressed silicon carbide. J. Mater. Sci. 11, 1246–1253 (1976).

    CAS  Google Scholar 

  23. J. Reyes-Gasga and R. García-García: Analysis of the electron-beam radiation damage of TEM samples in the acceleration energy range from 0.1 to 2 MeV using the standard theory for fast electrons. Radiat. Phys. Chem. 64, 359–367 (2002).

    CAS  Google Scholar 

  24. S. Takeda: An atomic model of electron-irradiation-induced defects on {113} in Si. Jpn. J. Appl. Phys. 30, L639–L642 (1991).

    CAS  Google Scholar 

  25. D. Teweldebrhan and A.A. Balandin: Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 94, 013101 (2009).

    Google Scholar 

  26. G. Thomas, H. Mori, H. Fujita, and R. Sinclair: Electron irradiation induced crystalline amorphous transitions in Ni-Ti alloys. Scr. Mater. 16, 589–592 (1982).

    CAS  Google Scholar 

  27. H. Mori: Solid-state amorphization by irradiation. In Current Topics in amorphous Materials: Physics and Technology, Elsevier Science Publishers: Amsterdam, 1997.

    Google Scholar 

  28. P.R. Okamoto, N.Q. Lam, and L.E. Rein: Physics of Crystal-to-glass transformations. In Solid State Physics: Physics of Crystal-to-Glass Transformations, Vol. 52 (Academic Press, San Diego, 1999).

    Google Scholar 

  29. I. Jenčič, M.W. Bench, I.M. Robertson, and M.A. Kirk: Electron-beam-induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs. J. Appl. Phys. 78, 974–982 (1995).

    Google Scholar 

  30. F. Corticelli, G. Lulli, and P.G. Meili: Solid-phase epitaxy of implanted silicon at liquid nitrogen and room temperature induced by electron irradiation in the electron microscope. Philos. Mag. Lett. 60, 101–106 (1990).

    Google Scholar 

  31. R.G. Elliman, J.S. William, D.M. Maher, and W.L. Brown: Kinetics, microstructure and mechanisms of ion beam induced epitaxial crystallization of semiconductors. Mater. Res. Soc. Symp. Proc. 51, 319–327 (1985).

    Google Scholar 

  32. M. Miyao, A. Polman, W. Sinke, F.W. Saris, and R. van Kemp: Electron irradiation activated low temperature annealing of phosphorus implanted silicon. Appl. Phys. Lett. 48, 1132–1134 (1986).

    CAS  Google Scholar 

  33. J. Frantz, J. Tarus, K. Nordlund, and J. Keinonen: Mechanism of electron-irradiation-induced recrystallization in Si. Phys. Rev. B 64, 125313 (2001).

    Google Scholar 

  34. P. Kern, C. Jäggi, I. Utke, V. Friedli, and J. Michler: Local electron beam induced reduction and crystallization of amorphous titania films. Appl. Phys. Lett. 89, 021902 (2006).

    Google Scholar 

  35. T. Nagase and Y. Umakoshi: Electron irradiation induced crystallization of the amorphous phase in Zr-Cu based metallic glasses with various thermal stability. Mater. Trans. 45, 13–23 (2004).

    CAS  Google Scholar 

  36. T. Nagase, A. Nino, and Y. Umakoshi: Phase stability of an amorphous phase against electron irradiation induced crystallization in Fe-based metallic glasses. Mater. Trans. 48, 1340–1349 (2007).

    CAS  Google Scholar 

  37. V.V. Roddatis, D.S. Su, E. Beckmann, F.C. Jentoft, U. Braun, J. Kröhnert, and R. Schlögl: The structure of thin zirconia films obtained by self-assembled monolayer mediated deposition: TEM and HREM study. Surf. Coat. Technol. 151–152, 63–66 (2002).

    Google Scholar 

  38. L.A. Grunes, R.D. Leapman, C.N. Wilker, R. Hoffmann, and A.B. Kunz: Oxygen K near-edge fine structure: An electron-energy-loss investigation with comparisons to new theory for selected 3d transition-metal oxides. Phys. Rev. B. 25, 7157–7173 (1982).

    CAS  Google Scholar 

  39. G. Wang, G. Luo, Y.L. Soo, R.F. Sabirianov, H. Lin, W. Mei, F. Namavar, and C. Cheung: Phase stabilization in nitrogen-implanted nanocrystalline cubic zirconia. Phys. Chem. Chem. Phys. 13, 19517–19525 (2011).

    CAS  Google Scholar 

  40. D. Gosset, M. Dollé, D. Simeone, and G. Baldinozzi, and L. Thomé: Structural evolution of zirconium carbide under ion irradiation. J. Nucl. Mater. 373, 123–129 (2008).

    CAS  Google Scholar 

  41. P.D. Edmondson, W.J. Weber, F. Namavar, and Y. Zhang: Determination of the displacement energies of O, Si and Zr under electron beam irradiation. J. Nucl. Mater. 422, 86–91 (2011).

    Google Scholar 

Download references

ACKNOWLEDGMENT

We would like to thank the financial supports from the Doctoral Fund Project of Yanshan University (B905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Hu.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Hu, W. Superfluous oxygen diffusion induced amorphization of ZrC0.6O0.4 and transformation of amorphous layer under electron beam irradiation. Journal of Materials Research 31, 137–147 (2016). https://doi.org/10.1557/jmr.2015.386

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.386

Navigation