Skip to main content
Log in

The effect of pre-ageing on the microstructure and properties of 7050 alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present work, the effect of pre-ageing temperature and time variations on the mechanical properties and electrical conductivity of the Retrogression and re-aging (RRA) treated 7050 has been investigated. The results reveal that the electronic conductivity and hardness of RRA-treated samples are sensitive to the pre-ageing tempers. The RRA-treated samples with 120 °C/2 h pre-ageing +180 °C/2 h retrogression +120 °C/24 h re-ageing temper can be tailored toward a good combination of strength and elongation, while the electrical conductivity of re-ageing samples is also higher than that of 120 °C/24 h pre-ageing RRA-treated samples. With an intermediate pre-ageing temperature of 80 °C/24 h RRA-treated samples possess a higher re-aged electronic conductivity, while no significant differences can be found between hardness of 120 °C/2 h and 120 °C/24 h pre-ageing RRA-treated samples. The variation of hardness and electronic conductivity during retrogression depends on the pre-ageing tempers. For under-aged sample, the retrogression hardness appears a stage of hardness increasing followed by a further decrease in hardness results, owing to disappearance of dissolving stage of fine GP zone and η′ phase during pre-ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. Y.H. Zhao, X.Z. Liao, and Y.T. Zhu: Enhanced mechanical properties in ultrafine grained 7075 Al alloy. J. Mater. Res. 20, 288 (2005).

    Article  CAS  Google Scholar 

  2. D. Vojtech and E. Tagiev: Casting properties of the high-strength AlZnMgCuNiSi alloys. J. Mater. Res. 18, 635 (2003).

    Article  CAS  Google Scholar 

  3. J.P. Immarigon, R.T. Holt, A.K. Koul, L. Zhao, W. Wallace, and J.C. Beddoes: Lightweight materials for aircraft applications. Mater. Charact. 35, 41 (1995).

    Article  Google Scholar 

  4. J.C. Williams and E.A. Starke: Progress in structural materials for aerospace systems. Acta Mater. 51, 5775 (2003).

    Article  CAS  Google Scholar 

  5. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller: Recent development in aluminum alloys for aerospace applications. Mater. Sci. Eng., A 280, 102 (2000).

    Article  Google Scholar 

  6. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge: Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng., A 280, 37 (2000).

    Article  Google Scholar 

  7. B. Liu, C.Q. Peng, R.C. Wang, X.F. Wang, and T.T. Li: Recent development and prospects for giant plane aluminum alloys. Trans. Nonferrous Met. Soc. China 20, 1705 (2010).

    CAS  Google Scholar 

  8. Y. Liu, D.M. Jiang, B.Q. Li, W.S. Yang, and J. Hu: Effect of cooling aging on microstructure and mechanical properties of an Al-Zn-Mg-Cu alloy. Mater. Des. 54, 79 (2014).

    Article  Google Scholar 

  9. L. Xu, G.Z. Dai, X.M. Huang, J.W. Zhao, J. Han, and J.W. Gao: Foundation and application of Al–Zn–Mg–Cu alloy flow stress constitutive equation in friction screw press die forging. Mater. Des. 47, 465 (2013).

    Article  CAS  Google Scholar 

  10. C. Sharma, D.K. Dwivedi, and P. Kumar: Effect of post weld heat treatments on microstructure and mechanical properties of friction stir welded joints of Al–Zn–Mg alloy AA7039. Mater. Des. 43, 134 (2013).

    Article  CAS  Google Scholar 

  11. J. Li, F. Li, M. He, F. Xue, M. Zhang, and C. Wang: Indentation technique for estimating the fracture toughness of 7050 aluminum alloy with the Berkovich indenter. Mater. Des. 40, 176 (2012).

    Article  CAS  Google Scholar 

  12. A.F. Oliveira, M.C. Barros, K.R. Cardoso, and D.N. Travessa: The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminum alloys. Mater. Sci. Eng., A 379, 321 (2004).

    Article  Google Scholar 

  13. J.K. Parker and A.J. Ardell: Effect of retrogression and re-aging treatments on the microstructure of A1-7075-T651. Metall. Trans. 15, 1531 (1984).

    Article  Google Scholar 

  14. F. Viana, A.M.P. Pinto, H.M.C. Santos, and A.B. Lopes: Retrogression and re-ageing of 7075 aluminium alloy: Microstructural characterization. J. Mater. Process. Technol. 93, 54 (1999).

    Article  Google Scholar 

  15. B. Cina and M. Talianke: Retrogression and reaging and the role of dislocations in the stress corrosion of 7000-type aluminum alloys. Metall. Trans. A 20, 87 (1989).

    Google Scholar 

  16. X.J. Wu, M.D. Raizenne, W.R. Chen, C. Poon, and W. Wallace: Thirty years of retrogression and re-aging. In Brescia, Italy: In ICAS 2002 Congress (pp. 1–11).

  17. K. Ural: A study of optimization of heat-treatment conditions in retrogression and reaging treatment of 7075-T6 aluminum alloy. J. Mater. Sci. Lett. 13, 383 (1994).

    Article  CAS  Google Scholar 

  18. J.F. Li, N. Birbilis, C.X. Li, Z.Q. Jia, B. Cai, and Z.Q. Zheng: Influence of retrogression temperature and time on the mechanical properties and exfoliation corrosion behavior of aluminium alloy AA7150. Mater. Charact. 60, 1334 (2009).

    Article  CAS  Google Scholar 

  19. Y.P. Xiao, Q.L. Pan, W.B. Li, X.Y. Liu, and Y.B. He. Influence of retrogression and re-aging treatment on corrosion behavior of an Al–Zn–Mg–Cu alloy. Mater. Des. 23, 2149 (2011).

    Article  Google Scholar 

  20. M. Puiggali, A. Zielinski, J.M. Olive, E. Renauld, D. Desjardins, and M. Cid: Effect of microstructure on stress corrosion cracking of an Al-Zn-Mg-Cu Alloy. Corrs. Sci. 40, 805 (1998).

    Article  CAS  Google Scholar 

  21. G.J. Meng and G.S. Frankel: Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys. J. Electrochem. Soc. 151, 271 (2004).

    Article  Google Scholar 

  22. T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux: Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy. Acta Mater. 58, 4814 (2010).

    Article  CAS  Google Scholar 

  23. B. Sarkar, M. Marek, and E.A. Starke: The effect of copper content and heat treatment on the stress corrosion characteristics of Al–6Zn–2Mg–X Cu alloys. Metall. Trans. A 12, 1929 (1981).

    Article  Google Scholar 

  24. W. Feng, B.Q. Xiong, Y.Q. Zhang, B.H. Zhu, H.W. Liu, and X.Q. He: Effect of heat treatment on the microstructure and mechanical properties of the spray-deposited Al–10.8Zn–2.8Mg–1.9Cu alloy. Mater. Sci. Eng., A 486, 648 (2008).

    Article  Google Scholar 

  25. J.K. Park and A.J. Ardell: Microchemical analysis of precipitate free zones in 7075-A1 in the T6, T7 and RRA tempers. Acta Metall. Mater. 39, 591 (1991).

    Article  CAS  Google Scholar 

  26. D.K. Xu, N. Birbilis, and P.A. Rometsch. The effect of pre-ageing temperature and retrogression heating rate on the strength and corrosion behaviour of AA7150. Corros. Sci. 54, 17 (2012).

    Article  CAS  Google Scholar 

  27. D. Feng, X.M. Zhang, S.D. Liu, T. Wang, Z.Z. Wu, and Y.W. Guo: The effect of pre-ageing temperature and retrogression heating rate on the microstructure and properties of AA7055. Mater. Sci. Eng., A 588, 34 (2013).

    Article  CAS  Google Scholar 

  28. M. Nicolas and A. Deschamps: Characterization and modelling of precipitate evolution in an Al–Zn–Mg alloy during non-isothermal heat treatments. Acta Mater. 51, 6077 (2003).

    Article  CAS  Google Scholar 

  29. T. Ungár, J. Lendvai, I. Kovács, G. Groma, and E. Kovács-Csetényi: The decomposition of the solid solution state in the temperature range 20–200°C in an Al-Zn-Mg alloy. J. Mater. Sci. 14, 671 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, W. & Jiang, D. The effect of pre-ageing on the microstructure and properties of 7050 alloy. Journal of Materials Research 30, 3803–3810 (2015). https://doi.org/10.1557/jmr.2015.372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.372

Navigation