Skip to main content
Log in

Effect of underlying boron nitride thickness on photocurrent response in molybdenum disulfide — boron nitride heterostructures

  • Invited Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Here we report on the photocurrent response of two-dimensional (2D) heterostructures of sputtered MoS2 on boron nitride (BN) deposited on (001)-oriented Si substrates. The steady state photocurrent (Iph) measurements used a continuous laser of λ = 658 nm (E = 1.88 eV) over a broad range of laser intensities, P (∼1 µW < P < 10 µW), and indicate that Iph obtained from MoS2 layers with the 80 nm BN under layer was ∼4 times higher than that obtained from MoS2 layers with the 30 nm BN under layer. We also found super linear dependence of Iph on P (IphPγ, with γ > 1) in both the samples. The responsivities obtained over the range of laser intensity studied were in the order of mA/W (∼12 and ∼2.7 mA/W with 80 nm BN and 30 nm BN under layers, respectively). These investigations provide crucial insight into the optical activity of MoS2 on BN, which could be useful for developing a variety of optoelectronic applications with MoS2 or other 2D transition metal dichalcogenide heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).

    Article  CAS  Google Scholar 

  2. D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, and M.C. Hersam: Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102 (2014).

    Article  CAS  Google Scholar 

  3. N. Pradhan, D.A. Rhodes, S. Memaran, J.M. Poumirol, D. Smirnov, S. Talapatra, S. Feng, N. Perea-López, A.L. Elias, M. Terrones, P.M. Ajayan, and L. Balicas: Hall and field-effect mobilities in few layered p-WSe2 field-effect transistors. Sci. Rep. 5, 8979 (2015).

    Article  CAS  Google Scholar 

  4. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011).

    Article  CAS  Google Scholar 

  5. S. Ghosh, S. Najmaei, S. Kar, R. Vajtai, N. Pradhan, J. Lou, L. Balicas, P.M. Ajayan, and S. Talapatra: Universal ac conductance in large area CVD grown MoS2. Phys. Rev. B 89, 125422 (2014).

    Article  Google Scholar 

  6. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).

    Article  CAS  Google Scholar 

  7. S. Kim, A. Konar, W. Hwang, J.H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.B. Yoo, J.Y. Choi, Y.W. Jin, S.Y. Lee, D. Jena, W. Choi, and K. Kim: High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012).

    Article  Google Scholar 

  8. Y. Zhang, J. Ye, Y. Matsuhashi, and Y. Iwasa: Ambipolar MoS2 thin flake transistors. Nano Lett. 12, 1136 (2012).

    Article  CAS  Google Scholar 

  9. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang: Single-layer MoS2 phototransistors. ACS Nano 6(1), 74 (2012).

    Article  CAS  Google Scholar 

  10. H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, and S. Im: MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12(7), 3695 (2012).

    Article  CAS  Google Scholar 

  11. S. Ghosh, A. Winchester, B. Muchharla, M. Wasala, S. Feng, A.L. Elias, M.B.M. Krishna, T. Harada, C. Chin, K. Dani, S. Kar, M. Terrones, and S. Talapatra: Ultrafast intrinsic photoresponse and direct evidence of sub-gap states in liquid phase exfoliated MoS2 thin films. Sci. Rep. 5, 11272 (2015).

    Article  CAS  Google Scholar 

  12. W. Bao, X. Cai, D. Kim, K. Sridhara, and M.S. Fuhrer: High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 102, 042104 (2013).

    Article  Google Scholar 

  13. I. Bilgin, F. Liu, A. Vargas, A. Winchester, M.K.L. Man, M. Upmanyu, K. Dani, G. Gupta, S. Talapatra, A.D. Mohite, and S. Kar: Chemical vapor deposition synthesized atomically-thin molybdenum disulfide with optoelectronic-grade crystalline quality. ACS Nano 9(9), 8822 (2015).

    Article  CAS  Google Scholar 

  14. M. Buscema, G.A. Steele, H.S.J. van der Zant, and A. Castellanos-Gomez: The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 7, 561 (2014).

    Article  Google Scholar 

  15. D-H. Lien, J.S. Kang, M. Amani, K. Chen, M. Tosun, H-P. Wang, T. Roy, M.S. Eggleston, M.C. Wu, M. Dubey, S-C. Lee, J-H. He, and A. Javey: Engineering light outcoupling in 2D materials. Nano Lett. 15, 1356 (2015).

    Article  CAS  Google Scholar 

  16. Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B.I. Yakobson, H. Terrones, M. Terrones, B.K. Tay, J. Lou, S.T. Pantelides, Z. Liu, W. Zhou, and P.M. Ajayan: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135 (2014).

    Article  CAS  Google Scholar 

  17. Z. Liu, L. Song, S. Zhao, J. Huang, L. Ma, J. Zhang, J. Lou, and P.M. Ajayan: Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 11(5), 2032 (2011).

    Article  CAS  Google Scholar 

  18. Y. Shi, W. Zhou, A.Y. Lu, W. Fang, Y.H. Lee, A.L. Hsu, S.M. Kim, K.K. Kim, H.Y. Yang, L.J. Li, J.C. Idrobo, and J. Kong: van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12(6), 2784 (2012).

    Article  CAS  Google Scholar 

  19. M. Okada, T. Sawazaki, K. Watanabe, T. Taniguch, H. Hibino, H. Shinohara, and R. Kitaura: Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano 8(8), 8273 (2014).

    Article  CAS  Google Scholar 

  20. X. Zhang, F. Meng, J.R. Christianson, C. Arroyo-Torres, M.A. Lukowski, D. Liang, J.R. Schmidt, and S. Jin: Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy. Nano Lett. 14(6), 3047 (2014).

    Article  CAS  Google Scholar 

  21. M. Björck and G. Andersson: GenX: An extensible x-ray reflectivity refinement program utilizing differential evolution. J. Appl. Cryst. 40, 1174 (2007).

    Article  Google Scholar 

  22. B.C. Windom, W.G. Sawyer, and D.W. Hahn: A Raman spectroscopic study of MoS2 and MoO3: Applications to tribological systems. Tribol. Lett. 42(3), 301 (2011).

    Article  CAS  Google Scholar 

  23. H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, and D. Baillargeat: From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 22, 1385 (2012).

    Article  CAS  Google Scholar 

  24. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, and S. Ryu: Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5), 2695 (2010).

    Article  CAS  Google Scholar 

  25. M. Boukhicha, M. Calandra, M.A. Measson, O. Lancry, and A. Shukla: Anharmonic phonons in few-layer MoS2: Raman spectroscopy of ultralow energy compression and shear modes. Phys. Rev. B 87, 195316 (2013).

    Article  Google Scholar 

  26. A. Rose: Recombination processes in insulators and semiconductors. Phys. Rev. 97(2), 322 (1955).

    Article  Google Scholar 

  27. N. Perea-López, A.L. Elías, A. Berkdemir, A. Castro-Beltran, H.R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones: Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23, 5511 (2013).

    Article  Google Scholar 

  28. S. Kundu, S. Ghosh, M. Fralaide, T.N. Narayanan, V.K. Pillai, and S. Talapatra: Fractional photo-current dependence of graphene quantum dots prepared from carbon nanotubes. Phys. Chem. Chem. Phys. 17, 24566 (2015).

    Article  CAS  Google Scholar 

  29. K.K. Chi: Dielectric Phenomena in Solids (Academic Press, Burlington, 2004).

    Google Scholar 

  30. N.F. Mott and E. Davis: Electronic Processes in Non-crystalline Materials (Oxford University Press, London, 1971).

    Google Scholar 

  31. N. Kushwaha, V.S. Kushwaha, R.K. Shukla, and A. Kumar: Determination of energy of defect centers in a-Se78Ge22 thin films. Philos. Mag. Lett. 86, 691 (2006).

    Article  CAS  Google Scholar 

  32. N.A. Bakr: Anomalous photoconductive transport properties of As2Se3 films. Egypt. J. Sol. 25, 13 (2002).

    Google Scholar 

  33. V. Klee, E. Preciado, D. Barroso, A.E. Nguyen, C. Lee, K.J. Erickson, M. Triplett, B. Davis, I-H. Lu, S. Bobek, J. McKinley, J.P. Martinez, J. Mann, A.A. Talin, L. Bartels, and F. Léonard: Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1–x)Se2 x alloy devices. Nano Lett. 15, 2612 (2015).

    Article  CAS  Google Scholar 

  34. H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang: Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 100, 123104 (2012).

    Article  Google Scholar 

  35. W. Park, J. Park, J. Jang, H. Lee, H. Jeong, K. Cho, S. Hong, and T. Lee: Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors. Nanotechnology 24, 095202 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the U.S. Army Research Office through a MURI Grant No. W911NF-11-1-0362. The X-ray reflectivity experiment shown was carried out in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. D.M. would like to acknowledge Dr. Mauro Sardela for his help with X-ray measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikat Talapatra.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

A previous error in this article has been corrected, see https://doi.org/10.1557/jmr.2016.129.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasala, M., Zhang, J., Ghosh, S. et al. Effect of underlying boron nitride thickness on photocurrent response in molybdenum disulfide — boron nitride heterostructures. Journal of Materials Research 31, 893–899 (2016). https://doi.org/10.1557/jmr.2015.364

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.364

Navigation