Skip to main content
Log in

Laser metal deposition additive manufacturing of TiC/Inconel 625 nanocomposites: Relation of densification, microstructures and performance

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Laser metal deposition (LMD) additive manufacturing was used to deposit Inconel 625 matrix composites reinforced with nano-TiC particles. The effects of laser energy input per unit length (E) on the densification level, microstructural features, mircohardness, and wear property were investigated. The relatively low E induced insufficient liquid with higher viscosity, thus inhibiting the melted liquid from spreading out smoothly. As a result, a large number of micropores and reduced densification level of LMD-processed parts were obtained. When the E of 100 kJ/m was properly settled, the obtainable densification level generally approached 98.8%. The TiC reinforcements experienced successive microstructural changes from agglomeration to uniform distribution with coarsening grain, as the applied E increased. The nearly fully dense parts using optimal experimental parameters achieved an increased average microhardness of 330 HV0.2, resultant considerably low coefficient of friction of 0.41 and reduced wear rate of 5.4 × 10−4 mm3/(N m) in dry sliding wear tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. V. Shankar, K.B.S. Rao, and S.L. Mannan: Microstructure and mechanical properties of Inconel 625 superalloy. J. Nucl. Mater. 288, 222 (2001).

    Article  CAS  Google Scholar 

  2. T.E. Abioye, J. Folkes, and A.T. Clare: A parametric study of Inconel 625 wire laser deposition. J. Mater. Process. Technol. 213, 2145 (2013).

    Article  CAS  Google Scholar 

  3. K.P. Cooper, P. Slebodnick, and E.D. Thomas: Seawater corrosion behavior of laser surface modified Inconel 625 alloy. Mater. Sci. Eng., A 206, 138 (1996).

    Article  Google Scholar 

  4. Z.N. Bi, J.X. Dong, L. Zheng, and X.S. Xie: Phenomenon and mechanism of high temperature low plasticity in high-Cr nickel-based superalloy. J. Mater. Sci. Technol. 29, 187 (2013).

    Article  CAS  Google Scholar 

  5. J.H. He and E.J. Lavernia: Development of nanocrystalline structure during cryomilling of Inconel 625. J. Mater. Res. 16, 2724 (2001).

    Article  CAS  Google Scholar 

  6. D.E. Cooper, N. Blundell, S. Maggs, and G.J. Gibbons: Additive layer manufacture of Inconel 625 metal matrix composites, reinforcement material evaluation. J. Mater. Process. Technol. 213, 2191 (2013).

    Article  CAS  Google Scholar 

  7. I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia: Particulate reinforced metal matrix composites—A review. J. Mater. Sci. 26, 1137 (1991).

    Article  CAS  Google Scholar 

  8. X.Y. Li and K.N. Tandon: Effect of ion implantation on the dry sliding wear behavior of SiC reinforced Al-Si composite. Surf. Coat. Technol. 90, 136 (1997).

    Article  CAS  Google Scholar 

  9. T.C. Lei, J.H. Ouyang, Y.T. Pei, and Y. Zhou: Microstructure and wear resistance of laser clad TiC particle reinforced coating. Mater. Sci. Technol. 11, 520 (1995).

    Article  CAS  Google Scholar 

  10. B.C. Mei, R.Z. Yuan, and X.L. Duan: Investigation of Ni3Al-matrix composites strengthened by TiC. J. Mater. Res. 8, 2830 (2001).

    Article  Google Scholar 

  11. D.F. Jiang, C. Hong, M.L. Zhong, M. Alkhayat, A. Weisheit, A. Gasser, H.J. Zhang, I. Kelbassa, and R. Poprawe: Fabrication of nano-TiCp reinforced Inconel 625 composite coatings by partial dissolution of micro-TiCp through laser cladding energy input control. Surf. Coat. Technol. 249, 125 (2014).

    Article  CAS  Google Scholar 

  12. B.L. Zheng, T. Topping, J.E. Smugeresky, Y.Z. Zhou, A. Biswas, D. Baker, and E.J. Lavernia: The influence of Ni-coated TiC on laser-deposited IN625 metal matrix composites. Metall. Mater. Trans. A 42, 568 (2010).

    Article  CAS  Google Scholar 

  13. X.D. Hui, Y.S. Yang, Z.F. Wang, G.Q. Yuan, and X.C. Chen: High temperature creep behavior of in-situ TiC particulate reinforced Fe–Cr–Ni matrix composite. Mater. Sci. Eng., A 282, 187 (2000).

    Article  Google Scholar 

  14. R. Casati and M. Vedani: Metal matrix composites reinforced by nano-particles-a review. Metals 4, 65–68 (2014).

    Article  CAS  Google Scholar 

  15. F. He, Q. Han, and M.J. Jackson: Nanoparticulate reinforced metal matrix nanocomposites a review. Int. J. Nanopart. 1, 301 (2009).

    Article  Google Scholar 

  16. D.D. Gu, Y.C. Hagedorn, W. Meiners, K. Wissenbach, and R. Poprawe: Selective laser melting of in-situ TiC/Ti5Si3 composites with novel reinforcement architecture and elevated performance. Surf. Coat. Technol. 205, 3285 (2011).

    Article  CAS  Google Scholar 

  17. K. Shah, A.J. Pinkerton, A. Salman, and L. Li: Effects Of melt pool variables and process parameters in laser direct metal deposition of aerospace alloys. Mater. Manuf. Process. 25, 1372 (2010).

    Article  CAS  Google Scholar 

  18. H.P. Qua, P. Li, S.Q. Zhang, A. Li, and H.M. Wang: Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material. Mater. Des. 31, 574 (2010).

    Article  CAS  Google Scholar 

  19. G.P. Dindaa, A.K. Dasgupta, and J. Mazumderb: Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability. Mat. Sci. Eng., A 509, 98 (2009).

    Article  CAS  Google Scholar 

  20. H. Sun and K.M. Flores: Laser deposition of a Cu-based metallic glass powder on a Zr-based glass substrate. J. Mater. Res. 23, 2692 (2008).

    Article  CAS  Google Scholar 

  21. G. Rolink, S. Vogt, L. Sencekova, A. Weisheit, R. Poprawe, and M. Palm: Laser metal deposition and selective laser melting of Fe-28 at.% Al. J. Mater. Res. 29, 2036 (2014).

    Article  CAS  Google Scholar 

  22. Y.Z. Zhang, J.C. Sun, C. Huang, and G.W. Li: Characterization of in-situ titanium matrix composites prepared by laser melting deposition. Rare Met. Mater. Eng. 40, 33 (2011).

    Article  CAS  Google Scholar 

  23. M. Rombouts, G. Maes, M. Mertens, and W. Hendrix: Laser metal deposition of Inconel 625: Microstructure and mechanical properties. J. Laser Appl. 24, 052007 (2012).

    Article  CAS  Google Scholar 

  24. Y.Z. Zhang, L.K. Shi, G.W. Li, and M.Z. Xi: Characterization on laser melting deposition of metallic components. Rare Met. Mater. Eng. 40, 27 (2011).

    Article  Google Scholar 

  25. D.D. Gu: Laser Additive Manufacturing of High-performance Materials, 1st ed. (Springer-Verlag, Berlin Heidelberg, Germany, 2015).

    Google Scholar 

  26. D.D. Gu and Y.F. Shen: Effects of processing parameters on consolidation and microstructure of W–Cu components by DMLS. J. Alloys Compd. 473, 107 (2009).

    Article  CAS  Google Scholar 

  27. Y. Zhou and G.H. Wu: Analysis Methods in Materials Science—X-ray Diffraction and Electron Microscopy in Materials Science, 2nd ed. (Harbin Institute of Technology Press, Harbin, China, 2007).

    Google Scholar 

  28. I. Takamichi and I.L.G. Roderick: The Physical Properties of Liquid Metals, 1st ed. (Clarendon Press, Oxford, Britain, 1993).

    Google Scholar 

  29. Z.F. Yuan, J.J. Ke, and J. Li: Surface Tension of Metals and Alloys, 1st ed. (Science Press, Beijing, China, 2006).

    Google Scholar 

  30. R.D. Li, Y.S. Shi, L. Wang, J.H. Liu, and Z.G. Wang: The key metallurgical features of selective laser melting of stainless steel powder for building metallic part. Powder Metall. Met. Ceram. 50, 141 (2011).

    Article  CAS  Google Scholar 

  31. T. Vilaro, C. Colin, J.D. Bartout, L. Naze, and M. Sennour: Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy. Mater. Sci. Eng., A 534, 446 (2012).

    Article  CAS  Google Scholar 

  32. H. Yan, P.L. Zhang, Z.S. Yu, C.G. Li, and R.D. Li: Development and characterization of laser surface cladding (Ti,W)C reinforced Ni-30Cu alloy composite coating on copper. Opt. Laser Technol. 44, 1351 (2012).

    Article  CAS  Google Scholar 

  33. V. Erukhimovitch and J. Baram: Crystallization kinetics. Phys. Rev. B 50, 5854 (1994).

    Article  CAS  Google Scholar 

  34. M. Boccalini and H. Goldenstein: Solidification of high speed steels. Int. Mater. Rev. 46, 92 (2001).

    Article  CAS  Google Scholar 

  35. A. Simchi and H. Asgharzadeh: Densification and microstructural evaluation during laser sintering of M2 high speed steel powder. Mater. Sci. Technol. 201462 (2004).

    Article  CAS  Google Scholar 

  36. H. Qi, J. Mazumder, and H. Ki: Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition. J. Appl. Phys. 100, 024903 (2006).

    Article  CAS  Google Scholar 

  37. A. Simchi and H. Pohl: Effects of laser sintering processing parameters on the microstructure and densification of iron powder. Mater. Sci. Eng., A 359, 119 (2003).

    Article  CAS  Google Scholar 

  38. H.J. Niu and I.T.H. Chang: Selective laser sintering of gas and water atomized high speed steel powders. Scr. Mater. 41, 25 (1999).

    Article  CAS  Google Scholar 

  39. H.J. Niu and I.T.H. Chang: Instability of scan tracks of selective laser sintering of high speed steel powder. Scr. Mater. 41, 1229 (1999).

    Article  CAS  Google Scholar 

  40. Y.P. Lei, H. Murakawa, Y.W. Shi, and X.Y. Li: Numerical analysis of the competitive influence of Marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting. Comput. Mater. Sci. 21, 276 (2001).

    Article  CAS  Google Scholar 

  41. K. Arafune and A. Hirata: Thermal and solutal marangoni convection in Ln-Ga-Sb system. J. Cryst. Growth 197, 811 (1999).

    Article  CAS  Google Scholar 

  42. J.J. Bellina, Jr., J.A. Kargol, and N.F. Fiore: Surface film behavior on a Ni-base superalloy. Scr. Metall. Mater. 15, 211 (1981).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully appreciate the financial support from the National Natural Science Foundation of China (Nos. 51322509 and 51575267), the Outstanding Youth Foundation of Jiangsu Province of China (No. BK20130035), the Program for New Century Excellent Talents in University (No. NCET-13-0854), the Science and Technology Support Program (The Industrial Part), Jiangsu Provincial Department of Science and Technology of China (No. BE2014009-2), the 333 Project (No. BRA2015368), Science and Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Human Resources and Social Security of China, the Program for Distinguished Talents of Six Domains in Jiangsu Province of China (No. 2013-XCL-028), the Fundamental Research Funds for the Central Universities (Nos. NE2013103 and NP2015206), the Funding of Jiangsu Innovation Program for Graduate Education (No. SJLX15_0126), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Gu, D. Laser metal deposition additive manufacturing of TiC/Inconel 625 nanocomposites: Relation of densification, microstructures and performance. Journal of Materials Research 30, 3616–3628 (2015). https://doi.org/10.1557/jmr.2015.358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.358

Navigation