Skip to main content
Log in

Grain boundary character dependence of radiation-induced segregation in a model Ni–Cr alloy

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ni-based fcc alloys are frequently used as critical structural materials in nuclear energy applications. Despite extensive studies, fundamental questions remain regarding point defect migration and solute segregation as a function of grain boundary character after irradiation. In this study, a coupled experimental and modeling approach is used to understand the response of grain boundary character in a model Ni–5Cr alloy after high temperature heavy-ion irradiation. Radiation-induced segregation and void denuded zones were experimentally examined as a function of grain boundary character, while a kinetic rate theory model with grain boundary character boundary conditions was used to theoretically model Cr depletion in the alloy system. The results highlight major variations in the radiation response between the coherent and incoherent twin grain boundaries, but show limited disparity in defect sink strength between random low- and high-angle grain boundary regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. S.J. Zinkle and G.S. Was: Materials challenges in nuclear energy. Acta Mater. 61, 735 (2013).

    Article  CAS  Google Scholar 

  2. E.A. Kenik and J.T. Busby: Radiation-induced degradation of stainless steel light water reactor internals. Mater. Sci. Eng., R 73, 67 (2012).

    Article  CAS  Google Scholar 

  3. S.M. Bruemmer, E.P. Simonen, P.M. Scott, P.L. Andresen, G.S. Was, and J.L. Nelson: Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals. J. Nucl. Mater. 274, 299 (1999).

    Article  CAS  Google Scholar 

  4. G.S. Was, J.P. Wharry, B. Frisbie, B.D. Wirth, D. Morgan, J.D. Tucker, and T.R. Allen: Assessment of radiation-induced segregation mechanisms in austenitic and ferritic–martensitic alloys. J. Nucl. Mater. 411, 41 (2011).

    Article  CAS  Google Scholar 

  5. T. Duh, J. Kai, and F. Chen: Effects of grain boundary misorientation on solute segregation in thermally sensitized and proton-irradiated 304 stainless steel. J. Nucl. Mater. 287, 198 (2000).

    Article  Google Scholar 

  6. J.J. Kai, F.R. Chen, and T.S. Duh: Effects of grain boundary misorientation on radiation-induced solute segregation in proton irradiated 304 stainless steels. Mater. Trans. 45, 40 (2004).

    Article  CAS  Google Scholar 

  7. S. Watanabe and Y. Takamatsu: Sink effect of grain boundary on radiation-induced segregation in austenitic stainless steel. J. Nucl. Mater. 287, 152 (2000).

    Article  Google Scholar 

  8. N. Sakaguchi, M. Endo, S. Watanabe, H. Kinoshita, S. Yamashita, and H. Kokawa: Radiation-induced segregation and corrosion behavior on Σ3 coincidence site lattice and random grain boundaries in proton-irradiated type-316L austenitic stainless steel. J. Nucl. Mater. 434, 65 (2013).

    Article  CAS  Google Scholar 

  9. M.J. Demkowicz, O. Anderoglu, X. Zhang, and A. Misra: The influence of Σ3 twin boundaries on the formation of radiation-induced defect clusters in nanotwinned Cu. J. Mater. Res. 26, 1666 (2011).

    Article  CAS  Google Scholar 

  10. N. Li, J. Wang, Y.Q. Wang, Y. Serruys, M. Nastasi, and A. Misra: Incoherent twin boundary migration induced by ion irradiation in Cu. J. Appl. Phys. 113, 023508 (2013).

    Article  CAS  Google Scholar 

  11. N. Li, K. Hattar, and A. Misra: In situ probing of the evolution of irradiation-induced defects in copper. J. Nucl. Mater. 439, 185 (2013).

    Article  CAS  Google Scholar 

  12. K.G. Field, L.M. Barnard, C.M. Parish, J.T. Busby, D. Morgan, and T.R. Allen: Dependence on grain boundary structure of radiation induced segregation in a 9wt.% Cr model ferritic/martensitic steel. J. Nucl. Mater. 435, 172 (2013).

    Article  CAS  Google Scholar 

  13. K.G. Field, B.D. Miller, H.J.M. Chichester, K. Sridharan, and T.R. Allen: Relationship between lath boundary structure and radiation induced segregation in a neutron irradiated 9 wt.% Cr model ferritic/martensitic steel. J. Nucl. Mater. 445, 143 (2014).

    Article  CAS  Google Scholar 

  14. C.M. Barr, G.A. Vetterick, K.A. Unocic, K. Hattar, X.M. Bai, and M.L. Taheri: Anisotropic radiation induced segregation in 316L austenitic stainless steel with grain boundary character. Acta Mater. 67, 145 (2014).

    Article  CAS  Google Scholar 

  15. G-G. Lee, H-H. Jin, Y-B. Lee, and J. Kwon: Observation and rate theory modeling of grain boundary segregation in Σ3 twin boundaries in ion-irradiated stainless steel 316. J. Nucl. Mater. 449, 234 (2014).

    Article  CAS  Google Scholar 

  16. W. Han, E.G. Fu, M.J. Demkowicz, Y. Wang, and A. Misra: Irradiation damage of single crystal, coarse-grained, and nanograined copper under helium bombardment at 450 °C. J. Mater. Res. 28, 2763 (2013).

    Article  CAS  Google Scholar 

  17. W.Z. Han, M.J. Demkowicz, E.G. Fu, Y.Q. Wang, and A. Misra: Effect of grain boundary character on sink efficiency. Acta Mater. 60, 6341 (2012).

    Article  CAS  Google Scholar 

  18. X-M. Bai, L. Vernon, R. Hoagland, A. Voter, M. Nastasi, and B.P. Uberuaga: Role of atomic structure on grain boundary-defect interactions in Cu. Phys. Rev. B. 85, 214103 (2012).

    Article  CAS  Google Scholar 

  19. X-M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, and B.P. Uberuaga: Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 80, 1631 (2010).

    Article  CAS  Google Scholar 

  20. M.A. Tschopp, K. Solanki, F. Gao, X. Sun, M. Khaleel, and M. Horstemeyer: Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe. Phys. Rev. B. 85, 1 (2012).

    Article  CAS  Google Scholar 

  21. M.A. Tschopp, M.F. Horstemeyer, F. Gao, X. Sun, and M. Khaleel: Energetic driving force for preferential binding of self-interstitial atoms to Fe grain boundaries over vacancies. Scr. Mater. 64, 908 (2011).

    Article  CAS  Google Scholar 

  22. L. Barnard, J.D. Tucker, S. Choudhury, T.R. Allen, and D. Morgan: Modeling radiation induced segregation in Ni–Cr model alloys from first principles. J. Nucl. Mater. 425, 8 (2012).

    Article  CAS  Google Scholar 

  23. L. Barnard and D. Morgan: Ab initio molecular dynamics simulation of interstitial diffusion in Ni–Cr alloys and implications for radiation induced segregation. J. Nucl. Mater. 449, 225 (2014).

    Article  CAS  Google Scholar 

  24. J.D. Tucker, R. Najafabadi, T.R. Allen, and D. Morgan: Ab initio-based diffusion theory and tracer diffusion in Ni–Cr and Ni–Fe alloys. J. Nucl. Mater. 405, 216 (2010).

    Article  CAS  Google Scholar 

  25. J.M. Perks, A.D. Marwick, and C.A. English: A Computer Code to Calculate Radiation-Induced Segregation in Concentrated Ternary Alloys, AERE-R-12121, 1986.

  26. T.R. Allen and G.S. Was: Modeling radiation-induced segregation in austenitic Fe-Cr-Ni alloys. Acta Metall. 46, 3679 (1998).

    CAS  Google Scholar 

  27. D.E. Brandon: The structure of high-angle grain boundaries. Acta Metall. 14, 1479 (1966).

    Article  CAS  Google Scholar 

  28. V. Randle: A methodology for grain boundary plane assessment by single-section trace analysis. Scr. Mater. 44, 2789 (2001).

    Article  CAS  Google Scholar 

  29. G.S. Was and T. Allen: Intercomparison of microchemical evolution under various types of particle irradiation. J. Nucl. Mater. 205, 332 (1993).

    Article  CAS  Google Scholar 

  30. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, and F.A. Garner: On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res., Sect. B 310, 75 (2013).

    Article  CAS  Google Scholar 

  31. F.A. Garner: Impact of the injected interstitial on the correlation of charged particle and neutron-induced radiation damage. J. Nucl. Mater. 117, 177 (1983).

    Article  CAS  Google Scholar 

  32. D.B. Williams and C.B. Carter: The Transmission Electron Microscope. In Transmission Electron Microscopy: A Textbook for Materials Science. (Springer, 2009).

  33. H. Wiedersich, P.R.R. Okamoto, and N.Q. Lam: A theory of radiation-induced segregation in concentrated alloys. J. Nucl. Mater. 83, 98 (1979).

    Article  CAS  Google Scholar 

  34. T. Duh, J. Kai, F. Chen, and L. Wang: Numerical simulation modeling on the effects of grain boundary misorientation on radiation-induced solute segregation in 304 austenitic stainless steels. J. Nucl. Mater. 294, 267–273 (2001).

    Article  CAS  Google Scholar 

  35. J. Ruzickova and B. Million: Self-diffusion of the components in the fcc phase of binary solid solutions of the Fe-Ni-Cr system. Mater. Sci. Eng. 50, 59 (1981).

    Article  CAS  Google Scholar 

  36. H. Ullmaier, P. Ehrhart, P. Jung, and H. Schultz: Atomic Defects in Metals (Springer, Berlin, 1991).

    Book  Google Scholar 

  37. J.D. Tucker, T.R. Allen, R. Najafabadi, T.R. Allen, and D. Morgan: Determination of solute-interstitial interactions in Ni-Cr by first principle. Int. Conf. Adv. Math. Comput. Methods React. Physics, M C, 2, 891 (2009).

    Google Scholar 

  38. G.S. Was: Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin, 2007).

    Google Scholar 

  39. J.D. Rittner and D.N. Seidman: <110> symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies. Phys. Rev. B 54, 6999 (1996).

    Article  CAS  Google Scholar 

  40. D.L. Olmsted, S.M. Foiles, and E.A. Holm: Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater. 57, 3694 (2009).

    Article  CAS  Google Scholar 

  41. K.Y. Yu, D. Bufford, F. Khatkhatay, H. Wang, M.A. Kirk, and X. Zhang: In situ studies of irradiation-induced twin boundary migration in nanotwinned Ag. Scr. Mater. 69, 385 (2013).

    Article  CAS  Google Scholar 

  42. K.Y. Yu, D. Bufford, C. Sun, Y. Liu, H. Wang, M.A. Kirk, M. Li, and X. Zhang: Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals. Nat. Commun. 4, 1377 (2013).

    Article  CAS  Google Scholar 

  43. O. Engler and V. Randle: Introduction to Texture Analysis, 2nd ed. (Taylor & Francis Group, Boca Raton, FL, 2010).

    Google Scholar 

  44. L. Priester: Grain Boundaries: From Theory to Engineering, 1st ed. (Springer, New York, 2013).

    Book  Google Scholar 

  45. A.H. King and D.A. Smith: On the mechanisms of point-defect absorption by grain and twin boundaries. Philos. Mag. 42, 495 (1980).

    Article  CAS  Google Scholar 

  46. J. Burke and D. Stuckey: Dislocation loop-free zones around grain boundaries in quenched aluminium and aluminum alloys. Philos. Mag. 31, 1063 (1975).

    Article  CAS  Google Scholar 

  47. B.K. Basu and C. Elbaum: Surface vacancy pits and vacancy diffusion in aluminum. Acta Metall. 13, 1117 (1965).

    Article  Google Scholar 

  48. R.W. Siegel, S.M. Chang, and R.W. Balluffi: Vacancy loss at grain boundaries in quenched polycrystalline gold. Acta Metall. 28, 249 (1979).

    Article  Google Scholar 

  49. C. Jiang, N. Swaminathan, J. Deng, D. Morgan, and I. Szlufarska: Effect of grain boundary stresses on sink strength. Mater. Res. Lett. 2, 100 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors C.M.B., J.N., L.B., I.S., D.M., and M.L.T. gratefully acknowledge funding from the National Science Foundation, Division of Materials Research, Metals and Metallic Nanostructures (MMN) program, Grant No. 1105681. C.M.B. and M.L.T. thank Carpenter Technology, Reading, PA for supplying the Ni–Cr alloy used in this project. M.L.T. and J.N. also gratefully acknowledge funding in part from the United States Department of Energy, Basic Energy Sciences under the Early Career program through contract DE-SC0008274. STEM-EDS measurements were supported through a user project supported by ORNL’s Center for Nanophase Materials Sciences, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. K.H. acknowledges support from the DOE Basic Energy Sciences. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitra L. Taheri.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barr, C.M., Barnard, L., Nathaniel, J.E. et al. Grain boundary character dependence of radiation-induced segregation in a model Ni–Cr alloy. Journal of Materials Research 30, 1290–1299 (2015). https://doi.org/10.1557/jmr.2015.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.34

Navigation