Skip to main content

Advertisement

Log in

A polydopamine coated polyaniline single wall carbon nanotube composite material as a stable supercapacitor cathode in an organic electrolyte

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Developing high energy density supercapacitors is of great importance to the transportation, consumer electronics, and micro-grid energy storage sectors. Recently, the development of high voltage organic electrolyte based supercapacitor devices has been gaining much attention. Among them, there is an on-going intense interest in investigating high capacity lithium ion storage anode materials in hybrid supercapacitors. However, developing high capacity cathode materials for high voltage organic electrolyte supercapacitor devices is rarely investigated. The low electrical double layer capacitances of carbon cathode electrodes, which are widely used in current supercapacitor devices, are often the limiting bottleneck. In this contribution, we investigated the electrochemical energy storage behavior of a polyaniline (PANI)-single wall carbon nanotube (SWCNT) composite material in an organic electrolyte as a supercapacitor cathode. The PANI-SWCNT composite exhibits a high specific capacitance of 503 F/g, of which 58.8% of the total capacitance is attributed to the pseudocapacitive and electrical double layer energy storage. The cycling stability of the PANI-SWCNT composite could be further improved by polydopamine (PDA) modification. The PDA with strong adhesion properties is able to prevent mechanical degradation. The PDA modified PANI-SWCNT shows excellent stability with only 5% degradation after 2000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. C. Liu, F. Li, L.P. Ma, and H.M. Cheng: Advanced materials for energy storage. Adv. Mater. 22(8), E28 (2010).

    Article  CAS  Google Scholar 

  2. A. Du Pasquier, I. Plitz, S. Menocal, and G. Amatucci: A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J. Power Sources 115(1), 171 (2003).

    Article  Google Scholar 

  3. A. Burke: R&D considerations for the performance and application of electrochemical capacitors. Electrochim. Acta 53(3), 1083 (2007).

    Article  CAS  Google Scholar 

  4. K. Naoi, S. Ishimoto, J-i. Miyamoto, and W. Naoi: Second generation ‘nanohybrid supercapacitor’: Evolution of capacitive energy storage devices. Energy Environ. Sci. 5(11), 9363 (2012).

    Article  CAS  Google Scholar 

  5. V. Aravindan, J. Gnanaraj, Y-S. Lee, and S. Madhavi: Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem. Rev. 114(23), 11619 (2014).

    Article  CAS  Google Scholar 

  6. L.L. Zhang and X. Zhao: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520 (2009).

    Article  CAS  Google Scholar 

  7. V. Augustyn, P. Simon, and B. Dunn: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597 (2014).

    Article  CAS  Google Scholar 

  8. B. Kim, H. Chung, and W. Kim: High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes. Nanotechnology 23(15), 155401 (2012).

    Article  Google Scholar 

  9. V. Gupta and N. Miura: Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochim. Acta 52(4), 1721 (2006).

    Article  CAS  Google Scholar 

  10. K. Wang, P. Zhao, X. Zhou, H. Wu, and Z. Wei: Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites. J. Mater. Chem. 21(41), 16373 (2011).

    Article  CAS  Google Scholar 

  11. A. Sumboja, U.M. Tefashe, G. Wittstock, and P.S. Lee: Investigation of charge transfer kinetics of polyaniline supercapacitor electrodes by scanning electrochemical microscopy. Adv. Mater. Interfaces 2(1), 1400154 (2015).

    Article  Google Scholar 

  12. E. Song and J-W. Choi: Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3(3), 498 (2013).

    Article  CAS  Google Scholar 

  13. J. Yan, L. Yang, M. Cui, X. Wang, K.J. Chee, V.C. Nguyen, V. Kumar, A. Sumboja, M. Wang, and P.S. Lee: Aniline tetramer-graphene oxide composites for high performance supercapacitors. Adv. Energy Mater. 4(18), 1400781 (2014).

    Article  Google Scholar 

  14. H. Lee, S.M. Dellatore, W.M. Miller, and P.B. Messersmith: Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426 (2007).

    Article  CAS  Google Scholar 

  15. J. Yan, L. Yang, M.F. Lin, J. Ma, X. Lu, and P.S. Lee: Polydopamine spheres as active templates for convenient synthesis of various nanostructures. Small 9(4), 596 (2013).

    Article  CAS  Google Scholar 

  16. J.H. Hafner, M.J. Bronikowski, B.R. Azamian, P. Nikolaev, A.G. Rinzler, D.T. Colbert, K.A. Smith, and R.E. Smalley: Catalytic growth of single-wall carbon nanotubes from metal particles. Chem. Phys. Lett. 296(1–2), 195 (1998).

    Article  CAS  Google Scholar 

  17. M.E. Lynge, R. van der Westen, A. Postma, and B. Städler: Polydopamine—a nature-inspired polymer coating for biomedical science. Nanoscale 3(12), 4916 (2011).

    Article  CAS  Google Scholar 

  18. T. Abdiryim, Z. Xiao-Gang, and R. Jamal: Comparative studies of solid-state synthesized polyaniline doped with inorganic acids. Mater. Chem. Phys. 90(2–3), 367 (2005).

    Article  CAS  Google Scholar 

  19. M. Trchová, I. Šeděnková, E. Tobolková, and J. Stejskal: FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films. Polym. Degrad. Stab. 86(1), 179 (2004).

    Article  Google Scholar 

  20. W. Zheng, M. Angelopoulos, A.J. Epstein, and A.G. MacDiarmid: Experimental evidence for hydrogen bonding in polyaniline: mechanism of aggregate formation and dependency on oxidation state. Macromolecules 30(10), 2953 (1997).

    Article  CAS  Google Scholar 

  21. R.A. Zangmeister, T.A. Morris, and M.J. Tarlov: Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir 29(27), 8619 (2013).

    Article  CAS  Google Scholar 

  22. C. Peng, D. Hu, and G.Z. Chen: Theoretical specific capacitance based on charge storage mechanisms of conducting polymers: Comment on ‘Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties’. Chem. Commun. 47(14), 4105 (2011).

    Article  CAS  Google Scholar 

  23. K. Zhang, L.L. Zhang, X.S. Zhao, and J. Wu: Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22(4), 1392 (2010).

    Article  CAS  Google Scholar 

  24. C-C. Hu and J-Y. Lin: Effects of the loading and polymerization temperature on the capacitive performance of polyaniline in NaNO3. Electrochim. Acta 47(25), 4055 (2002).

    Article  CAS  Google Scholar 

  25. S.R. Sivakkumar, J-S. Oh, and D-W. Kim: Polyaniline nanofibres as a cathode material for rechargeable lithium-polymer cells assembled with gel polymer electrolyte. J. Power Sources 163(1), 573 (2006).

    Article  CAS  Google Scholar 

  26. S. Ardizzone, G. Fregonara, and S. Trasatti: INNER and outer active surface of RUO2 electrodes. Electrochim. Acta 35(1), 263 (1990).

    Article  CAS  Google Scholar 

  27. X. Petrissans, A. Betard, D. Giaume, P. Barboux, B. Dunn, L. Sicard, and J.Y. Piquemal: Solution synthesis of nanometric layered cobalt oxides for electrochemical applications. Electrochim. Acta 66, 306 (2012).

    Article  CAS  Google Scholar 

  28. M. Sathiya, A.S. Prakash, K. Ramesha, J.M. Tarascon, and A.K. Shukla: V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J. Am. Chem. Soc. 133(40), 16291 (2011).

    Article  CAS  Google Scholar 

  29. G.A. Snook, P. Kao, and A.S. Best: Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196(1), 1 (2011).

    Article  CAS  Google Scholar 

  30. W.J. Albery, Z. Chen, B.R. Horrocks, A.R. Mount, P.J. Wilson, D. Bloor, A.T. Monkman, and C.M. Elliott: Spectroscopic and electrochemical studies of charge transfer in modified electrodes. Faraday Discuss. Chem. Soc. 88, 247 (1989).

    Article  CAS  Google Scholar 

  31. B.E. Conway: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum, New York, 1999).

    Book  Google Scholar 

  32. X. Wang, W.S. Liu, X. Lu, and P.S. Lee: Dodecyl sulfate-induced fast faradic process in nickel cobalt oxide-reduced graphite oxide composite material and its application for asymmetric supercapacitor device. J. Mater. Chem. 22(43), 23114 (2012).

    Article  CAS  Google Scholar 

  33. J. Liebscher, R. Mrówczyński, H.A. Scheidt, C. Filip, N.D. Hădade, R. Turcu, A. Bende, and S. Beck: Structure of polydopamine: A never-ending story?Langmuir 29(33), 10539 (2013).

    Article  CAS  Google Scholar 

  34. M. Beidaghi and C.L. Wang: Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 22(21), 4501 (2012).

    Article  CAS  Google Scholar 

  35. P.L. Taberna, P. Simon, and J.F. Fauvarque: Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J. Electrochem. Soc. 150(3), A292 (2003).

    Article  CAS  Google Scholar 

  36. M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, and G. Gruner: Printable thin Film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9(5), 1872 (2009).

    Article  CAS  Google Scholar 

  37. Y. Liu, K. Ai, and L. Lu: Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114(9), 5057 (2014).

    Article  CAS  Google Scholar 

  38. N. Betz, A. Le Moël, E. Balanzat, J.M. Ramillon, J. Lamotte, J.P. Gallas, and G. Jaskierowicz: A FTIR study of PVDF irradiated by means of swift heavy ions. J. Polym. Sci., Part B: Polym. Phys. 32(8), 1493 (1994).

    Article  CAS  Google Scholar 

  39. C.A. Pryde: IR studies of polyimides. I. Effects of chemical and physical changes during cure. J. Polym. Sci., Part A: Polym. Phys. 27(2), 711 (1989).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This research is supported by NRF Competitive Research Program NRF-CRP13-2014-02. Part of the work was carried out in the NTU-HUJ-BGU Nanomaterials for Energy and Water Management Program under the Campus for Research Excellence and Technological Enterprise (CREATE), that is supported by the National Research Foundation, Prime Minister’s Office, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooi See Lee.

Additional information

This paper has been selected as an Invited Feature Paper.

Supplementary Material

43578_2015_30233575_MOESM1_ESM.docx

Supplemental Material: A Polydopamine coated polyaniline single wall carbon nanotube composite material as a stable supercapacitor cathode in organic electrolyte (approximately 1.54 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Lee, P.S. A polydopamine coated polyaniline single wall carbon nanotube composite material as a stable supercapacitor cathode in an organic electrolyte. Journal of Materials Research 30, 3575–3583 (2015). https://doi.org/10.1557/jmr.2015.342

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.342

Navigation