Skip to main content
Log in

Fabrication of flexible pressure sensors with microstructured polydimethylsiloxane dielectrics using the breath figures method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Flexible touch sensors with high sensitivity show promise in biomedical diagnostics and for artificial “electronic skin” for robotics or prosthetic devices. For “electronic skin” applications, there exists a need for low-cost, scalable methods for producing pixels that sense both medium (10–100 kPa) and low pressures (<10 kPa). Here, the “breath figures” (BFs) method, a simple, self-assembly-based method for producing honeycomb-structured porous polymer films, was used to prepare pattern compressible, and microstructured dielectric layers for capacitive pressure sensors. Porous polystyrene BFs films served as molds for structuring polydimethylsiloxane dielectrics. Pressure sensing devices containing the BFs-molded dielectrics consistently gave pressure response with little hysteresis, high sensitivities at lower applied pressures, and improved sensitivity at higher pressures. Analysis of microstructure geometries and pressure sensor performance suggests that structures with higher aspect ratios (height-to-width) produce less hysteresis, and that less uniform, more polydisperse structures yield a more linear pressure response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. X. Zhao, Q. Hua, R. Yu, Y. Zhang, and C. Pan: Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping. Adv. Electron. Mater. 1, 1500142 (2015).

    Article  CAS  Google Scholar 

  2. A.P. Gerratt, H.O. Michaud, and S.P. Lacour: Elastomeric electronic skin for prosthetic tactile sensation. Adv. Funct. Mater. 25, 2287 (2015).

    Article  CAS  Google Scholar 

  3. D-H. Kim, N. Lu, R. Ma, Y-S. Kim, R-H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islan, K.J. Yu, T. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H-J. Chung, H. Keum, M. McCormick, P. Liu, Y-W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, and J.A. Rogers: Epidermal electronics. Science 333, 838 (2011).

    Article  CAS  Google Scholar 

  4. T. Xu, W. Wang, X. Bian, X. Wang, X. Wang, J.K. Luo, and S. Dong: High resolution skin-like sensor capable of sensing and visualizing various sensations and three dimensional shape. Sci. Rep. 5, 12997 (2015).

    Article  CAS  Google Scholar 

  5. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai: A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U. S. A. 101, 9966 (2004).

    Article  CAS  Google Scholar 

  6. M.L. Hammock, A. Chortos, B.C-K. Tee, J.B-H. Tok, and Z. Bao: 25th anniversary article: The evolution of electronic skin (E-Skin): A brief history, design considerations, and recent progress. Adv. Mater. 25, 5997 (2013).

    Article  CAS  Google Scholar 

  7. M. Ramuz, B.C-K. Tee, J.B-H. Tok, and Z. Bao: Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv. Mater. 24, 3223 (2012).

    Article  CAS  Google Scholar 

  8. S. Wagner, S.P. Lacour, J. Jones, P.I. Hsu, J.C. Sturm, T. Li, and Z. Suo: Electronic skin: Architecture and components. Phys. E 25, 326 (2004).

    Article  Google Scholar 

  9. L. Pan, A. Chortos, G. Yu, Y. Wang, S. Issacson, R. Allen, Y. Shi, R. Dauskardt, and Z. Bao: An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5, 1 (2014).

    Google Scholar 

  10. M. Sergio, N. Manaresi, F. Campi, R. Canegallo, M. Tartagni, and R. Guerrieri: A dynamically reconfigurable monolithic CMOS pressure sensor for smart fabric. IEEE J. Solid-State Circuits 38, 966 (2003).

    Article  Google Scholar 

  11. C. Metzger, E. Gleisch, J. Meyer, M. Dansachmüller, I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, and S. Bauer: Flexible-foam-based capacitive sensor arrays for object detection at low cost. Appl. Phys. Lett. 92, 013506 (2008).

    Article  CAS  Google Scholar 

  12. D.J. Lipomi, M. Vosgueritchian, B.C-K. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, and Z. Bao: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788 (2011).

    Article  CAS  Google Scholar 

  13. S.C.B. Mannsfeld, B.C-K. Tee, R.M. Stoltenberg, C.V.H-H. Chen, S. Barman, B.V.O. Muir, A.N. Sokolov, C. Reese, and Z. Bao: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859 (2010).

    Article  CAS  Google Scholar 

  14. G. Schwartz, B.C-K. Tee, J. Mei, A.L. Appleton, D.H. Kim, H. Wang, and Z. Bao: Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013).

    Article  CAS  Google Scholar 

  15. B.C-K. Tee, A. Chortos, R.R. Dunn, G. Schwartz, E. Eason, and Z. Bao: Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv. Funct. Mater. 24, 5427 (2014).

    Article  CAS  Google Scholar 

  16. L.Y. Chen, B.C-K. Tee, A.L. Chortos, G. Schwartz, V. Tse, D.J. Lipomi, H-S. Philip Wong, M.V. McConnell, and Z. Bao: Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 5028–5037 (2014).

    Article  CAS  Google Scholar 

  17. S-J. Woo, J-H. Kong, D-G. Kim, and J-M. Kim: A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductors. J. Mater. Chem. C 2, 4415 (2014).

    Article  CAS  Google Scholar 

  18. M. Hernández-Guerrero and M.H. Stenzel: Honeycomb structured polymer films via breath figures. Polym. Chem. 3, 563 (2012).

    Article  Google Scholar 

  19. U.H.F. Bunz: Breath figures as a dynamic templating method for polymers and nanomaterials. Adv. Mater. 18, 973 (2006).

    Article  CAS  Google Scholar 

  20. W.B. Croft: Breath figures. Philos. Mag.Series 5 34, 180 (1892).

    Article  Google Scholar 

  21. W. Sun, Z. Shao, and J. Ji: Particle-assisted fabrication of honeycomb-structured hybrid films via breath figures method. Polymer 51, 4169 (2010).

    Article  CAS  Google Scholar 

  22. L. Heng, J. Zhai, Y. Zhao, J. Xu, X. Sheng, and L. Jiang: Enhancement of photocurrent generation by honeycomb structures in organic thin films. ChemPhysChem 7, 2520 (2006).

    Article  CAS  Google Scholar 

  23. C. Yu, J. Zhai, X. Gao, M. Wan, L. Jiang, T. Li, and Z. Li: Water-assisted fabrication of polyaniline honeycomb structure film. J. Phys. Chem. B 108, 4586 (2004).

    Article  CAS  Google Scholar 

  24. Y. Lu, Y. Ren, L. Wang, X. Wang, and C. Li: Template synthesis of conducting polyaniline composites based on honeycomb ordered polycarbonate film. Polymer 50, 2035 (2009).

    Article  CAS  Google Scholar 

  25. L. Song, R.K. Bly, J.N. Wilson, S. Bakbak, J.O. Park, M. Srinivasarao, and U.H.F. Bunz: Facile microstructuring of organic semiconducting polymers by the breath figure method: Hexagonally ordered bubble arrays in rigid rod-polymers. Adv. Mater. 16, 115 (2004).

    Article  CAS  Google Scholar 

  26. S. Chen, X. Lu, Y. Hu, and Q. Lu. Biomimetic honeycomb-patterned surface as the tunable cell adhesion scaffold. Biomater. Sci. 3, 85 (2014).

    Article  Google Scholar 

  27. L. Ghannam, M. Manguian, J. François, and L. Billon: A versatile route to functional biomimetic coatings: Ionomers for honeycomb-like structures. Soft Matter 3, 1492 (2007).

    Article  CAS  Google Scholar 

  28. Y. Saito, M. Shimomura, and H. Yabu: Breath figures of nanoscale bricks: A universal method for creating hierarchic porous materials from inorganic nanoparticles stabilized with mussel-inspired copolymers. Macromol. Rapid Commun. 35, 1763 (2014).

    Article  CAS  Google Scholar 

  29. B. Erdogan, L. Song, J.N. Wilson, J.O. Park, M. Srinivasarao, and U.H.F. Bunz: Permanent bubble arrays from a cross-linked poly(para-phenyleneethynylene): Picoliter holes without microfabrication. J. Am. Chem. Soc. 126, 3678 (2004).

    Article  CAS  Google Scholar 

  30. Y. Zhang and C. Wang: Micropatterning of proteins on 3D porous polymer film fabricated by using the breath-figure method. Adv. Mater. 19, 913 (2007).

    Article  CAS  Google Scholar 

  31. F. Galeotti, I. Chiusa, L. Morello, S. Giani, D. Breviario, S. Hatz, F. Damin, M. Chiari, and A. Bolognesi: Breath figures-mediated microprinting allows for versatile applications in molecular biology. Eur. Polym. J. 45, 3027 (2009).

    Article  CAS  Google Scholar 

  32. A. Böker, Y. Lin, K. Chiapperini, R. Horowitz, M. Thompson, V. Carreon, T. Xu, C. Abetz, H. Skaff, A.D. Dinsmore, T. Emrick, and T.P. Russell: Hierarchical nanoparticle assemblies formed by decorating breath figures. Nat. Mater. 3, 302 (2004).

    Article  CAS  Google Scholar 

  33. V. Vohra, S. Yunus, A. Attout, U. Giovanella, G. Scavia, R. Tubino, C. Botta, and A. Bolognesi: Bifunctional microstructured films and surfaces obtained by soft lithography from breath figure arrays. Soft Matter 5, 1656 (2009).

    Article  CAS  Google Scholar 

  34. A. Bolognesi, C. Botta, and S. Yunus: Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films. Thin Solid Films 492, 307 (2005).

    Article  CAS  Google Scholar 

  35. N. Maruyama, T. Koito, J. Nishida, T. Sawadaishi, X. Cieren, K. Ijiro, O. Karthaus, and M. Shimomura: Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films 327–329, 854 (1998).

    Article  Google Scholar 

  36. E. Ferrari, P. Fabbri, and F. Pilati: Solvent and substrate contributions to the formation of breath figure patterns in polystyrene films. Langmuir 27, 1874 (2011).

    Article  CAS  Google Scholar 

  37. M.H. Stenzel-Rosenbaum, T.P. Davis, A.G. Fane, and V. Chen: Porous polymer films and honeycomb structures made by the self-organization of well-defined macromolecular structures created by living radical polymerization techniques we acknowledge a DAAD (German Academic Exchange Service) scholarship (HSPIII) for Dr. M.H. Stenzel-Rosenbaum. Angew. Chem. Int. Ed. Engl. 40, 3428–3432 (2001).

    Article  CAS  Google Scholar 

  38. O. Pitois and B. Francois: Formation of ordered micro-porous membranes. Eur. Phys. J. B 8, 225 (1999).

    Article  CAS  Google Scholar 

  39. M. Srinivasarao: Three-dimensionally ordered array of air bubbles in a polymer film. Science 292, 79 (2001).

    Article  CAS  Google Scholar 

  40. J. Peng, Y. Han, Y. Yang, and B. Li: The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer 45, 447 (2004).

    Article  CAS  Google Scholar 

  41. C.X. Cheng, Y. Tian, Y.Q. Shi, R.P. Tang, and F. Xi: Porous polymer films and honeycomb structures based on amphiphilic dendronized block copolymers. Langmuir 21, 6576 (2005).

    Article  CAS  Google Scholar 

  42. W. Sun, J. Ji, and J. Shen: Rings of nanoparticle-decorated honeycomb-structured polymeric film: The combination of pickering emulsions and capillary flow in the breath figures method. Langmuir 24, 11338 (2008).

    Article  CAS  Google Scholar 

  43. H. Sun, H. Li, and L. Wu: Micro-patterned polystyrene surfaces directed by surfactant-encapsulated polyoxometalate complex via breath figures. Polymer 50, 2113 (2009).

    Article  CAS  Google Scholar 

  44. X. Jiang, T. Zhang, L. Xu, C. Wang, X. Zhou, and N. Gu: Surfactant-induced formation of honeycomb pattern on micropipette with curvature gradient. Langmuir 27, 5410 (2011).

    Article  CAS  Google Scholar 

  45. Y. Ito, A.A. Virkar, S. Mannsfeld, J.H. Oh, M. Toney, and J. Locklin: Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J. Am. Chem. Soc. 131, 9396 (2009).

    Article  CAS  Google Scholar 

  46. A.Z. Thong, D.S.W. Lim, A. Ahsan, G.T.W. Goh, J. Xu, and J.M. Chin: Non-close-packed pore arrays through one-step breath figure self-assembly and reversal. Chem. Sci. 5, 1375 (2014).

    Article  CAS  Google Scholar 

  47. O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa, and J. Hashimoto: Water-assisted formation of micrometer-size honeycomb patterns of polymers. Langmuir 16, 6071 (2000).

    Article  CAS  Google Scholar 

  48. Y. Zheng, Y. Kubowaki, M. Kashiwagi, and K. Miyazaki: Process optimization of preparing honeycomb-patterned polystyrene films by breath figure method. J. Mech. Sci. Technol. 25, 33 (2011).

    Article  CAS  Google Scholar 

  49. M.H. Stenzel, C. Barner-Kowollik, and T.P. Davis: Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. J. Polym. Sci., Part A: Polym. Chem. 44, 2363 (2006).

    Article  CAS  Google Scholar 

  50. P. Escalé, L. Rubatat, L. Billon, and M. Save: Recent advances in honeycomb-structured porous polymer films prepared via breath figures. Eur. Polym. J. 48, 1001 (2012).

    Article  CAS  Google Scholar 

  51. X. Han, Y. Tian, L. Wang, and C. Xiao: Formation of honeycomb films based on a soluble polyimide synthesized from 2,2′-bis[4-(3,4-dicarboxyphenoxy)phenyl]hexafluoropropane dianhydride and 3,3′-dimethyl-4,4′-diaminodiphenylmethane. J. Appl. Polym. Sci. 107, 618 (2008).

    Article  CAS  Google Scholar 

  52. M. Huh, M-H. Jung, Y.S. Park, T-B. Kang, C. Nah, R.A. Russell, P.J. Holden, and S. Yun, II: Fabrication of honeycomb-structured porous films from poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) via the breath figures method. Polym. Eng. Sci. 52, 920 (2012).

    Article  CAS  Google Scholar 

  53. A. Muñoz-Bonilla, M. Fernández-García, and J. Rodríguez-Hernández: Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 39, 510 (2014).

    Article  CAS  Google Scholar 

  54. X. Li, Y. Wang, L. Zhang, S. Tan, X. Yu, N. Zhao, G. Chen, and J. Xu: Fabrication of honeycomb-patterned polyalkylcyanoacrylate films from monomer solution by breath figures method. J. Colloid Interface Sci. 350, 253 (2010).

    Article  CAS  Google Scholar 

  55. C. Wang, Y. Mao, D. Wang, Q. Qu, G. Yang, and X. Hu: Fabrication of highly ordered microporous thin films by PS-b-PAA self-assembly and investigation of their tunable surface properties. J. Mater. Chem. 18, 683 (2008).

    Article  CAS  Google Scholar 

  56. L. Li, Y. Zhong, J. Li, J. Gong, Y. Ben, J. Xu, X. Chen, and Z. Ma: Breath figure lithography: A facile and versatile method for micropatterning. J. Colloid Interface Sci. 342, 192 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

S.M. acknowledges Stanford Undergraduate Advising and Research (UAR) and the Barry Goldwater Scholarship and Excellence in Education Foundation for support through funding. S.M. acknowledges Alex Chortos, as well as other members of the Bao Group, for sharing useful knowledge and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenan Bao.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, S., Bao, Z. Fabrication of flexible pressure sensors with microstructured polydimethylsiloxane dielectrics using the breath figures method. Journal of Materials Research 30, 3584–3594 (2015). https://doi.org/10.1557/jmr.2015.334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.334

Navigation