Skip to main content

Advertisement

Log in

Neodymium doped titania as photoanode and graphene oxide–CuS composite as counter electrode material in quantum dot solar cell

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The enhanced photoresponse of commercial TiO2 (C-TiO2) nanoparticles in quantum dot (QD) sensitized solar cells, when doped with neodymium (Nd), is explored for graphene oxide–copper sulphide (GO–CuS) composite material as counter electrode. The modification of C-TiO2 and the preparation of GO–CuS were done by solid state and sonication methods respectively. The same were characterized by spectroscopy, microscopy, and cyclic voltammetry techniques. Results clearly indicate an enhanced conversion efficiency of ∼1.6 times over the undoped C-TiO2. UV and reflectance spectroscopy reveal that the dopants/defects/oxygen vacancies create midbands causing favorable surface electron states which act as electron traps suppressing recombination and the same is later detrapped leading to an efficient electron transfer. The retention of anatase phase, increase in particle size and decrease in band gap energy to visible range together with high surface area imparted by the GO to CuS in counter electrode facilitate good light harvesting and rapid enhanced electron transfer to redox system on doping. These findings make Nd–TiO2 a good photoanode material and GO–CuS a good counter electrode in QD solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

SCHEME 1
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng, and X. Zhong: Near infrared absorption of CdSexTe1–x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability. ACS Nano 7, 5215 (2013).

    Article  CAS  Google Scholar 

  2. Z. Li, Y. Xie, H. Xu, T. Wang, Z. Xu, and H. Zhang: Expanding the photoresponse range of TiO2 nanotube arrays by CdS/CdSe/ZnS quantum dots co-modification. J. Photochem. Photobiol., A 224, 25 (2011).

    Article  CAS  Google Scholar 

  3. N. Balis, V. Dracopoulos, K. Bourikas, and P. Lianos: Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes. Electrochim. Acta 91, 246 (2013).

    Article  CAS  Google Scholar 

  4. I.V. Lightcap and P.V. Kamat: Fortification of CdSe quantum dots with graphene oxide. Excited state interations and light energy conversion. J. Am. Chem. Soc. 134, 7109 (2012).

    Article  CAS  Google Scholar 

  5. S. Fan, D. Kim, J. Kim, D.W. Jung, S.O. Kang, and J. Ko: Highly efficient CdSe quantum dot sensitized TiO2 photoelectrodes for solar cell applications. Electrochem.Commun. 11, 1337 (2009).

    Article  CAS  Google Scholar 

  6. V. Gonzalez-Pedro, Q. Shen, V. Jovanovski, S. Gimenez, R.T. Zaera, T. Toyoda, and I.M. Sera: Ultrafast characterisation of the electron injection from CdSe quantum dots and dye N719 co-sensitizers into TiO2 using sulphide based ionic liquid for enhanced long term stability. Electrochim. Acta 100, 35 (2013).

    Article  CAS  Google Scholar 

  7. Y. Duan, N. Fu, Q. Liu, Y. Fang, X. Zhou, and J. Zhang: Sn-doped TiO2 photoanode for dye sensitized solar cells. J. Phys. Chem. C 116, 8888 (2012).

    Article  CAS  Google Scholar 

  8. P.S. Archana, A. Gupta, M.M. Yusoff, and R. Jose: Tungsten doped titanium dioxide nanowires for high efficiency dye-sensitized solar cells. Phys. Chem. Chem. Phys. 16, 7448 (2014).

    Article  CAS  Google Scholar 

  9. T.V. Nam, N.T. Trang, and B.T. Cong: Mg-doped TiO2 for dye-sensitive solar cell: An electronic structure study. Proc. Natl. Conf. Theor. Phys. 37, 233 (2012).

    Google Scholar 

  10. S. Rengaraj, S. Venkatraj, J.W. Yeon, Y. Kim, X.Z. Li, and G.K.S. Pang: Preparation, characterisation and application of Nd-TiO2 photocatalyst for the reduction of Cr (VI) under UV light illumination. Appl. Catal., B 77, 157 (2007).

    Article  CAS  Google Scholar 

  11. D. Li, H. Haneda, S. Hishita, N. Ohashi, and N.K. Labhsetwar: Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J. Fluorine Chem. 126, 69 (2005).

    Article  CAS  Google Scholar 

  12. Y. Xu, C. Chen, X. Yang, X. Li, and B. Wang: Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 nanotubes. Appl. Surf. Sci. 255, 8624 (2009).

    Article  CAS  Google Scholar 

  13. T. López-Luke, A. Wolcott, L. Xu, S. Chen, Z. Wen, J. Li, E.D.L. Rosa, and J.Z. Zhang: Nitrogen-doped and CdSe quantum dot sensitized nanocrystalline TiO2 films for solar energy conversion application. J. Phys. Chem. C 112, 1282 (2008).

    Article  CAS  Google Scholar 

  14. K.U. Minchitha and R.G. Balakrishna: Structural modification and property tailoring in titania for high efficiency in sunlight. Mater. Chem. Phys. 136, 720 (2012).

    Article  CAS  Google Scholar 

  15. G.S. Paul, J.H. Kim, M.S. Kim, K. Do, J. Ko, and J.S. Yu: Different hierarchical nanostructured carbons as counter electrodes for CdS quantum dot solar cells. ACS Appl. Mater. Interfaces 4, 375 (2011).

    Article  CAS  Google Scholar 

  16. M. Ye, C. Chen, N. Zhang, X. Wen, W. Guo, and C. Lin: Quantum-dot sensitized solar cells employing hierarchical Cu2S microspheres wrapped by reduced graphene oxide nanosheets as effective counter electrodes. Adv. Energy Mater. 4, 1301564 (2014). doi: https://doi.org/10.1002/aenm.201301564.

    Article  CAS  Google Scholar 

  17. J.G. Radich, R. Dwyer, and P.V. Kamat: Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. Overcoming the redox limitations of S2/Sn2– at the counter electrode. J. Phys. Chem. Lett. 2, 2453 (2011).

    Article  CAS  Google Scholar 

  18. H.J. Lee, D.W. Chang, S. Park, S.M. Zakeerruddin, M. Gratzel, and M.K. Nazeeruddin: CdSe quantum dot (QD) and molecular dye hybrid sensitizers for TiO2 mesoporous solar cells: Working together with a common hole carrier of cobalt complexes. Chem. Commun. 46, 8788 (2010).

    Article  CAS  Google Scholar 

  19. M. Mathesh, J. Liu, N.D. Nam, S.K.H. Lam, R. Zheng, C.J. Barrow, and W. Yang: Facile synthesis of graphene oxide hybrids bridged by copper ions for increased conductivity. J. Mater. Chem. C. 1, 3084 (2013).

    Article  CAS  Google Scholar 

  20. J.D. Roy-Mayhew, D.J. Bozym, C. Punckt, and I.A. Aksay: Functionalized graphene as a catalytic counter electrode in dye—sensitized solar cells. ACS Nano 4, 6203 (2010).

    Article  CAS  Google Scholar 

  21. L. Chen, L. Tuo, J. Rao, and X. Zhou: TiO2 doped with different ratios of graphene and optimized application in CdS/CdSe quantum dot-sensitized solar cells. Mater. Lett. 124, 161 (2014).

    Article  CAS  Google Scholar 

  22. X. Luan, L. Chen, J. Zhang, G. Qu, J.C. Flake, and Y. Wanga: Electrophoretic deposition of reduced graphene oxide nano sheets on TiO2 nanotube arrays for dye sensitized solar cells. Electrochim. Acta 111, 216 (2013).

    Article  CAS  Google Scholar 

  23. A. Kathalingum, J. Rhee, and S. Han: Effects of graphene counter electrode and CdSe quantum dots in TiO2 and ZnO on dye sensitized solar cell performance. Int. J. Energy. Res. 38, 674 (2014).

    Article  CAS  Google Scholar 

  24. J. Bai and X. Jiang: A facile one-pot synthesis of copper sulfide-decorated reduced graphene oxide composites for enhanced detecting of H2O2 in biological environments. Anal. Chem. 85, 8095 (2013).

    Article  CAS  Google Scholar 

  25. R. Shwetharani, M.S. Jyothi, P.D. Laveena, and R.G. Balakrishna: Photoactive titania float for disinfection of water; evaluation of cell damage by bioanalytical techniques. Photochem. Photobiol. 90, 1099 (2014).

    CAS  Google Scholar 

  26. W.S. Hummers and R.E. Offman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  27. H.R. Chandan, V. Saravanan, R.K. Pai, and R.G. Balakrishna: Synergistic effect of binary ligands on nucleation and growth/size effect of nanocrystals: Studies on reusability of the solvent. J. Mater. Res. 29, 1556 (2014).

    Article  CAS  Google Scholar 

  28. V. Amoli and A.K. Sinha: Synthesis of multiwalled TiO2 nanotubes under weak alkaline conditions for dye-sensitized solar cells. J. Nanosci. Nanotechnol. 15, 726 (2014).

    Article  CAS  Google Scholar 

  29. X. Chen and S.S. Mao: Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chem. Rev. 107, 2896 (2007).

    Google Scholar 

  30. V.I. Klimov: Semiconductor and Metal Nanocrystals. Synthesis and Electronic and Optical Properties, 1st ed. (New York: CRC Press, 2003).

    Book  Google Scholar 

  31. R. Shwetharani, C.A.N. Fernando, and G.R. Balakrishana: Excellent hydrogen evolution by a multi approach via structure property tailoring of titania. RSC Adv. 5, 39127 (2015).

    Article  CAS  Google Scholar 

  32. J. Yan, G. Wu, N. Guan, L. Li, Z. Li, and X. Cao: Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anstase versus rutile. Phys. Chem. Chem. Phys. 15, 10978 (2013).

    Article  CAS  Google Scholar 

  33. J. Zhang, Z. Zhao, X. Wang, T. Yu, J. Guan, Z. Yu, Z. Li, and Z. Zou: Increasing oxygen vacancy density on the TiO2 surface by La-doping for dye—sensitized solar cells. J. Phys. Chem. C 114, 18396 (2010).

    Article  CAS  Google Scholar 

  34. C. Netravathi, B. Vishwanath, J. Michael, and M. Rajamath: Hydrothermal synthesis of amonoclinic VO2 nanotube-graphene hybrid for use as cathode material in lithium ion batteries. Carbon 50, 4843 (2012).

    Google Scholar 

  35. S. Muralikrishna, H. Sureshkumar, T.S. Varley, D.H. Nagaraju, and T. Ramakrishnappa: Insitu reduction and functionalization of graphene oxide with L-cyateine for simultaneous electrochemical determination of cadmium (II), lead (II), copper (II) and mercury (II) ions. Anal. Methods 6, 8698 (2014).

    Article  CAS  Google Scholar 

  36. J. Zen, H. Chung, and A.S. Kumar: Flow injection analysis of hydrogen peroxide on copper plated screen printed carbon electrodes. Analyst 125, 1633 (2000).

    Article  CAS  Google Scholar 

  37. T. Wang, J. Hu, W. Yang, and H. Zhang, Electrodeposition of monodispersed metal nanoparticles in a nafion film: Towards highly active nanocatalysts. Electrochem. Commun. 10, 814 (2008).

    Article  CAS  Google Scholar 

  38. P.V. Kamat: Quantum dot solar cells. The next big thing in photovoltaics. J. Phys. Chem. Lett. 4, 908 (2013).

    Article  CAS  Google Scholar 

  39. X. Xua, S. Gimenez, I. Mora-Sera, A. Abate, J. Bisquer, and G. Xu: Influence of cysteine adsorption on the performance of CdSe quantum dots sensitized solar cells. Mater. Chem. Phys. 124, 709 (2010).

    Article  CAS  Google Scholar 

  40. I. Mora-Sera, S. Gimenez, T. Moehl, F. Santiago, T. Lana-Villareal, R. Gomez, and J. Bisquert: Factro determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: The role of linker molecule and of the counter electrode. Nanotechnology 19, 424007 (2008).

    Article  CAS  Google Scholar 

  41. H.K. Jun, M.A. Careemm, and A.K. Arof: Performances of some low-cost counter electrode materials in CdS and CdSe quantum dot-sensitized solar cells. Nanoscale Res. Lett. 9, 69 (2014).

    Article  CAS  Google Scholar 

  42. S. Bingham and W.A. Daoud: Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping. J. Mater. Chem. 21, 2041–2050 (2011).

    Article  CAS  Google Scholar 

  43. P. Sudhagar, T. Song, D.H. Lee, I. Mora-Sera, J. Bisquert, M. Laudenslager, W.M. Sigmund, W.I. Park, U. Paik and Y.S. Kang: High open circuit voltage quantum dot sensitized solar cells manufactured with ZnO nanowire arrays and Si/ZnO branched hierarchical structures. J. Phys. Chem. Lett. 2, 1984 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors wish to acknowledge Ministry of New and Renewable Energy, India for funding and Center for Nano Science and Engineering, IISc for providing the facility to carry out the above work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Geetha Balakrishna.

Additional information

Supplementary Material

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2015.314.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Souza, L.P., Muralikrishna, S., Chandan, H.R. et al. Neodymium doped titania as photoanode and graphene oxide–CuS composite as counter electrode material in quantum dot solar cell. Journal of Materials Research 30, 3241–3251 (2015). https://doi.org/10.1557/jmr.2015.314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.314

Navigation