Abstract
Density functional theory computations were performed to investigate the adsorption and diffusion properties of lithium (Li) on tin disulfides nanosheets and its derived nanoribbons (NRs), in comparison with SnS2 bulk in 1T phase. The Li adsorption energies and migration barriers are comparable in SnS2 bulk and bilayer, and Li adsorbed at the octahedral sites has the highest binding energy in both SnS2 bulk and bilayer. Reducing the dimension of SnS2 to monolayer significantly lowers the Li diffusion barrier while keeping a considerable binding energy, and lithium favors the hollow sites which corresponding to the octahedral sites in bulk phase. Due to the edge effect, SnS2NRs gain an enhanced Li binding strength, increased Li mobility, and improved Li capacity. Thus, SnS2 NRs are a promising candidate for anode materials of Li-ion batteries with a high power density and fast charge/discharge rates.
Similar content being viewed by others
References
N. Liu, H. Wu, M.T. McDowell, Y. Yao, C.M. Wang, and Y. Cui: A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12(6), 3315 (2012).
H.C. Shin and M. Liu: Three-dimensional porous copper–tin alloy electrodes for rechargeable lithium batteries. Adv. Funct. Mater. 15(4), 582–586 (2005).
T. Bhardwaj, A. Antic, B. Pavan, V. Barone, and B.D. Fahlman: Enhanced electrochemical lithium storage by graphene nanoribbons. J. Am. Chem. Soc. 132(36), 12556 (2010).
Y. Li, D. Wu, Z. Zhou, C.R. Cabrera, and Z. Chen: Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: A computational study. J. Phys. Chem. Lett. 3(16), 2221 (2012).
Y. Jing, Z. Zhou, C.R. Cabrera, and Z. Chen: Metallic VS2 monolayer: A promising 2D anode material for lithium ion batteries. J. Phys. Chem. C 117(48), 25409 (2013).
R. Bhandavat, L. David, and G. Singh: Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett. 3(11), 1523 (2012).
C.K. Chan, H. Peng, R.D. Twesten, K. Jarausch, X.F. Zhang, and Y. Cui: Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett. 7(2), 490 (2007).
L.Q. Mai, B. Hu, W. Chen, Y.Y. Qi, C.S. Lao, R.S. Yang, Y. Dai, and Z.L. Wang: Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv. Mater. 19(21), 3712 (2007).
E-H. Kil, K-H. Choi, H-J. Ha, S. Xu, J.A. Rogers, M.R. Kim, Y-G. Lee, K.M. Kim, K.Y. Cho, and S-Y. Lee: Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped; ithium-ion batteries. Adv. Mater. 25(10), 1395 (2013).
K. Chang and W. Chen: l-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6), 4720–4728 (2011).
A.S. Arico, P. Bruce, B. Scrosati, J-M. Tarascon, and W. van Schalkwijk: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366 (2005).
C. Uthaisar and V. Barone: Edge effects on the characteristics of Li diffusion in graphene. Nano Lett. 10(8), 2838 (2010).
Q. Tang and Z. Zhou: Graphene-analogous low-dimensional materials. Prog. Mater. Sci. 58(8), 1244 (2013).
M.E. Holtz, Y. Yu, D. Gunceler, J. Gao, R. Sundararaman, K.A. Schwarz, T.A. Arias, H.D. Abruña, and D.A. Muller: Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett. 14(3), 1453 (2014).
Y. Jing, Z. Zhou, C.R. Cabrera, and Z. Chen: Graphene, inorganic graphene analogs and their composites for lithium ion batteries. J. Mater. Chem. A 2(31), 12104 (2014).
H. Hwang, H. Kim, and J. Cho: MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11(11), 4826 (2011).
K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010).
P. Woulfe:Experiments to show the Nature of Aurum Mosaicum: By Mr. Peter Woulfe, F.R.S. Philos. Trans. 61, 114 (1771).
B. Palosz, W. Steurer, and H. Schulz: Refinement of SnS2 polytypes 2H, 4H and 18R. Acta Crystallogr., Sect. B 46(4), 449 (1990).
T. Jiang and G.A. Ozin: New directions in tin sulfide materials chemistry. J. Mater. Chem. 8(5), 1099 (1998).
C.Y. Fong and M.L. Cohen: Electronic energy-band structure of SnS2 and SnSe2. Phys. Rev. B 5(8), 3095 (1972).
S.R. Suryawanshi, S.S. Warule, N.S. Chaudhari, S.B. Ogale, and M.A. More: Photo-enhanced field emission characteristics of SnS2 nanosheets. AIP Conf. Proc. 1591, 342 (2014).
Y.C. Zhang, J. Li, M. Zhang, and D.D. Dionysiou: Size-tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Environ. Sci. Technol. 45(21), 9324 (2011).
J. Li, Z. Yang, Y. Tang, Y. Zhang, and X. Hu: Carbon nanotubes-nanoflake-like SnS2 nanocomposite for direct electrochemistry of glucose oxidase and glucose sensing. Biosens. Bioelectron. 41, 698 (2013).
B. Luo, Y. Fang, B. Wang, J. Zhou, H. Song, and L. Zhi: Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy Environ. Sci. 5(1), 5226 (2012).
S.Y. Hong, R. Popovitz-Biro, Y. Prior, and R. Tenne: Synthesis of SnS2/SnS fullerene-like nanoparticles: A superlattice with polyhedral shape. J. Am. Chem. Soc. 125(34), 10470 (2003).
J-w. Seo, J-t. Jang, S.-w. Park, C. Kim, B. Park, and J. Cheon: Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv. Mater. 20(22), 4269 (2008).
J. Yujie, Z. Hui, M. Xiangyang, X. Jin, and Y. Deren: Single-crystalline SnS2 nano-belts fabricated by a novel hydrothermal method. J. Phys.: Condens. Matter 15(44), L661 (2003).
Y-T. Lin, J-B. Shi, Y-C. Chen, C-J. Chen, and P-F. Wu: Synthesis and characterization of tin disulfide (SnS2) nanowires. Nanoscale Res. Lett. 4(7), 694 (2009).
D. Chen, G.Z. Shen, K.B. Tang, Y.K. Liu, and Y.T. Qian: Aligned SnS2 nanotubes fabricated via a template-assisted solvent-relief process. Appl. Phys. A 77(6), 747 (2003).
T. Momma, N. Shiraishi, A. Yoshizawa, T. Osaka, A. Gedanken, J. Zhu, and L. Sominski: SnS2 anode for rechargeable lithium battery. J. Power Sources 97–98,198 (2001).
H. Mukaibo, A. Yoshizawa, T. Momma, and T. Osaka: Particle size and performance of SnS2 anodes for rechargeable lithium batteries. J. Power Sources 119–121,60 (2003).
H.S. Kim, Y.H. Chung, S.H. Kang, and Y-E. Sung: Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries. Electrochim. Acta 54(13), 3606 (2009).
S. Liu, X. Yin, Q. Hao, M. Zhang, L. Li, L. Chen, Q. Li, Y. Wang, and T. Wang: Chemical bath deposition of SnS2 nanowall arrays with improved electrochemical performance for lithium ion battery. Mater. Lett. 64(21), 2350 (2010).
H. Zhong, G. Yang, H. Song, Q. Liao, H. Cui, and P. Shen, and C-X. Wang: Vertically aligned graphene-like SnS2 ultrathin nanosheet arrays: Excellent energy storage, catalysis, photoconduction, and field-emitting performances. J. Phys. Chem. C 116(16), 9319 (2012).
Y. Huang, C. Ling, X. Chen, D. Zhou, and S. Wang: SnS2 nanotubes: A promising candidate for the anode material for lithium ion batteries. RSC Adv. 5(41), 32505 (2015).
B. Delley: From molecules to solids with the DMol3 approach. J. Chem. Phys. 113(18), 7756 (2000).
B. Delley: An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92(1), 508 (1990).
J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996).
J.P. Perdew and Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45(23), 13244 (1992).
S. Grimme: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787 (2006).
F. Ortmann, F. Bechstedt, and W.G. Schmidt: Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B 73(20), 205101 (2006).
J. Carrasco: Role of van der Waals forces in thermodynamics and kinetics of layered transition metal oxide electrodes: Alkali and alkaline-earth ion insertion into V2O5. J. Phys. Chem. C 118(34), 19599 (2014).
N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, and J. Andzelm: A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 28(2), 250 (2003).
B. Palosz and E. Salje: Lattice parameters and spontaneous strain in AX2 polytypes: CdI2, PbI2, SnS2 and SnSe2. J. Appl. Cryst. 22(6), 622 (1989).
I. Lefebvre-Devos, J. Olivier-Fourcade, J.C. Jumas, and P. Lavela: Lithium insertion mechanism in SnS2. Phys. Rev. B 61(4), 3110–3116 (2000).
K. Tibbetts, C.R. Miranda, Y.S. Meng, and G. Ceder: An ab initio study of lithium diffusion in titanium disulfide nanotubes. Chem. Mater. 19(22), 5302 (2007).
C. Uthaisar, V. Barone, and J.E. Peralta: Lithium adsorption on zigzag graphene nanoribbons. J. Appl. Phys. 106(11), 113715 (2009).
L.Z. Li, H. Li, J. Zhou, J. Lu, R. Qin, Z.X. Gao, and W.N. Mei: Electronic structure and stability of ultranarrow single-layer SnS2 nanaoribbons: A first-principles study. J. Comput. Theor. Nanosci. 7(10), 2100 (2010).
F. Li, C.R. Cabrera, and Z. Chen: Theoretical design of MoO3-based high-rate lithium ion battery electrodes: The effect of dimensionality reduction. J. Mater. Chem. A 2(45), 19180 (2014).
ACKNOWLEDGMENTS
This work was supported by Department of Defense (Grant W911NF-12-1-0083) and NSF (Grant EPS-1002410).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tu, K., Li, F. & Chen, Z. Enhanced lithium adsorption/diffusion and improved Li capacity on SnS2 nanoribbons: A computational investigation. Journal of Materials Research 31, 878–885 (2016). https://doi.org/10.1557/jmr.2015.312
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2015.312