Skip to main content

Advertisement

Log in

Enhanced lithium adsorption/diffusion and improved Li capacity on SnS2 nanoribbons: A computational investigation

  • Invited Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Density functional theory computations were performed to investigate the adsorption and diffusion properties of lithium (Li) on tin disulfides nanosheets and its derived nanoribbons (NRs), in comparison with SnS2 bulk in 1T phase. The Li adsorption energies and migration barriers are comparable in SnS2 bulk and bilayer, and Li adsorbed at the octahedral sites has the highest binding energy in both SnS2 bulk and bilayer. Reducing the dimension of SnS2 to monolayer significantly lowers the Li diffusion barrier while keeping a considerable binding energy, and lithium favors the hollow sites which corresponding to the octahedral sites in bulk phase. Due to the edge effect, SnS2NRs gain an enhanced Li binding strength, increased Li mobility, and improved Li capacity. Thus, SnS2 NRs are a promising candidate for anode materials of Li-ion batteries with a high power density and fast charge/discharge rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. N. Liu, H. Wu, M.T. McDowell, Y. Yao, C.M. Wang, and Y. Cui: A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 12(6), 3315 (2012).

    Article  CAS  Google Scholar 

  2. H.C. Shin and M. Liu: Three-dimensional porous copper–tin alloy electrodes for rechargeable lithium batteries. Adv. Funct. Mater. 15(4), 582–586 (2005).

    Article  CAS  Google Scholar 

  3. T. Bhardwaj, A. Antic, B. Pavan, V. Barone, and B.D. Fahlman: Enhanced electrochemical lithium storage by graphene nanoribbons. J. Am. Chem. Soc. 132(36), 12556 (2010).

    Article  CAS  Google Scholar 

  4. Y. Li, D. Wu, Z. Zhou, C.R. Cabrera, and Z. Chen: Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: A computational study. J. Phys. Chem. Lett. 3(16), 2221 (2012).

    Article  CAS  Google Scholar 

  5. Y. Jing, Z. Zhou, C.R. Cabrera, and Z. Chen: Metallic VS2 monolayer: A promising 2D anode material for lithium ion batteries. J. Phys. Chem. C 117(48), 25409 (2013).

    Article  CAS  Google Scholar 

  6. R. Bhandavat, L. David, and G. Singh: Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett. 3(11), 1523 (2012).

    Article  CAS  Google Scholar 

  7. C.K. Chan, H. Peng, R.D. Twesten, K. Jarausch, X.F. Zhang, and Y. Cui: Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett. 7(2), 490 (2007).

    Article  CAS  Google Scholar 

  8. L.Q. Mai, B. Hu, W. Chen, Y.Y. Qi, C.S. Lao, R.S. Yang, Y. Dai, and Z.L. Wang: Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv. Mater. 19(21), 3712 (2007).

    Article  CAS  Google Scholar 

  9. E-H. Kil, K-H. Choi, H-J. Ha, S. Xu, J.A. Rogers, M.R. Kim, Y-G. Lee, K.M. Kim, K.Y. Cho, and S-Y. Lee: Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped; ithium-ion batteries. Adv. Mater. 25(10), 1395 (2013).

    Article  CAS  Google Scholar 

  10. K. Chang and W. Chen: l-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6), 4720–4728 (2011).

    Article  CAS  Google Scholar 

  11. A.S. Arico, P. Bruce, B. Scrosati, J-M. Tarascon, and W. van Schalkwijk: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366 (2005).

    Article  CAS  Google Scholar 

  12. C. Uthaisar and V. Barone: Edge effects on the characteristics of Li diffusion in graphene. Nano Lett. 10(8), 2838 (2010).

    Article  CAS  Google Scholar 

  13. Q. Tang and Z. Zhou: Graphene-analogous low-dimensional materials. Prog. Mater. Sci. 58(8), 1244 (2013).

    Article  CAS  Google Scholar 

  14. M.E. Holtz, Y. Yu, D. Gunceler, J. Gao, R. Sundararaman, K.A. Schwarz, T.A. Arias, H.D. Abruña, and D.A. Muller: Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett. 14(3), 1453 (2014).

    Article  CAS  Google Scholar 

  15. Y. Jing, Z. Zhou, C.R. Cabrera, and Z. Chen: Graphene, inorganic graphene analogs and their composites for lithium ion batteries. J. Mater. Chem. A 2(31), 12104 (2014).

    Article  CAS  Google Scholar 

  16. H. Hwang, H. Kim, and J. Cho: MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11(11), 4826 (2011).

    Article  CAS  Google Scholar 

  17. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010).

    Article  CAS  Google Scholar 

  18. P. Woulfe:Experiments to show the Nature of Aurum Mosaicum: By Mr. Peter Woulfe, F.R.S. Philos. Trans. 61, 114 (1771).

  19. B. Palosz, W. Steurer, and H. Schulz: Refinement of SnS2 polytypes 2H, 4H and 18R. Acta Crystallogr., Sect. B 46(4), 449 (1990).

    Article  Google Scholar 

  20. T. Jiang and G.A. Ozin: New directions in tin sulfide materials chemistry. J. Mater. Chem. 8(5), 1099 (1998).

    Article  CAS  Google Scholar 

  21. C.Y. Fong and M.L. Cohen: Electronic energy-band structure of SnS2 and SnSe2. Phys. Rev. B 5(8), 3095 (1972).

    Article  Google Scholar 

  22. S.R. Suryawanshi, S.S. Warule, N.S. Chaudhari, S.B. Ogale, and M.A. More: Photo-enhanced field emission characteristics of SnS2 nanosheets. AIP Conf. Proc. 1591, 342 (2014).

    Article  CAS  Google Scholar 

  23. Y.C. Zhang, J. Li, M. Zhang, and D.D. Dionysiou: Size-tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Environ. Sci. Technol. 45(21), 9324 (2011).

    Article  CAS  Google Scholar 

  24. J. Li, Z. Yang, Y. Tang, Y. Zhang, and X. Hu: Carbon nanotubes-nanoflake-like SnS2 nanocomposite for direct electrochemistry of glucose oxidase and glucose sensing. Biosens. Bioelectron. 41, 698 (2013).

    Article  CAS  Google Scholar 

  25. B. Luo, Y. Fang, B. Wang, J. Zhou, H. Song, and L. Zhi: Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy Environ. Sci. 5(1), 5226 (2012).

    Article  CAS  Google Scholar 

  26. S.Y. Hong, R. Popovitz-Biro, Y. Prior, and R. Tenne: Synthesis of SnS2/SnS fullerene-like nanoparticles: A superlattice with polyhedral shape. J. Am. Chem. Soc. 125(34), 10470 (2003).

    Article  CAS  Google Scholar 

  27. J-w. Seo, J-t. Jang, S.-w. Park, C. Kim, B. Park, and J. Cheon: Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv. Mater. 20(22), 4269 (2008).

    Article  CAS  Google Scholar 

  28. J. Yujie, Z. Hui, M. Xiangyang, X. Jin, and Y. Deren: Single-crystalline SnS2 nano-belts fabricated by a novel hydrothermal method. J. Phys.: Condens. Matter 15(44), L661 (2003).

    Google Scholar 

  29. Y-T. Lin, J-B. Shi, Y-C. Chen, C-J. Chen, and P-F. Wu: Synthesis and characterization of tin disulfide (SnS2) nanowires. Nanoscale Res. Lett. 4(7), 694 (2009).

    Article  CAS  Google Scholar 

  30. D. Chen, G.Z. Shen, K.B. Tang, Y.K. Liu, and Y.T. Qian: Aligned SnS2 nanotubes fabricated via a template-assisted solvent-relief process. Appl. Phys. A 77(6), 747 (2003).

    Article  CAS  Google Scholar 

  31. T. Momma, N. Shiraishi, A. Yoshizawa, T. Osaka, A. Gedanken, J. Zhu, and L. Sominski: SnS2 anode for rechargeable lithium battery. J. Power Sources 97–98,198 (2001).

    Article  Google Scholar 

  32. H. Mukaibo, A. Yoshizawa, T. Momma, and T. Osaka: Particle size and performance of SnS2 anodes for rechargeable lithium batteries. J. Power Sources 119–121,60 (2003).

    Article  CAS  Google Scholar 

  33. H.S. Kim, Y.H. Chung, S.H. Kang, and Y-E. Sung: Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries. Electrochim. Acta 54(13), 3606 (2009).

    Article  CAS  Google Scholar 

  34. S. Liu, X. Yin, Q. Hao, M. Zhang, L. Li, L. Chen, Q. Li, Y. Wang, and T. Wang: Chemical bath deposition of SnS2 nanowall arrays with improved electrochemical performance for lithium ion battery. Mater. Lett. 64(21), 2350 (2010).

    Article  CAS  Google Scholar 

  35. H. Zhong, G. Yang, H. Song, Q. Liao, H. Cui, and P. Shen, and C-X. Wang: Vertically aligned graphene-like SnS2 ultrathin nanosheet arrays: Excellent energy storage, catalysis, photoconduction, and field-emitting performances. J. Phys. Chem. C 116(16), 9319 (2012).

    Article  CAS  Google Scholar 

  36. Y. Huang, C. Ling, X. Chen, D. Zhou, and S. Wang: SnS2 nanotubes: A promising candidate for the anode material for lithium ion batteries. RSC Adv. 5(41), 32505 (2015).

    Article  CAS  Google Scholar 

  37. B. Delley: From molecules to solids with the DMol3 approach. J. Chem. Phys. 113(18), 7756 (2000).

    Article  CAS  Google Scholar 

  38. B. Delley: An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92(1), 508 (1990).

    Article  CAS  Google Scholar 

  39. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996).

    Article  CAS  Google Scholar 

  40. J.P. Perdew and Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45(23), 13244 (1992).

    Article  CAS  Google Scholar 

  41. S. Grimme: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787 (2006).

    Article  CAS  Google Scholar 

  42. F. Ortmann, F. Bechstedt, and W.G. Schmidt: Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B 73(20), 205101 (2006).

    Article  CAS  Google Scholar 

  43. J. Carrasco: Role of van der Waals forces in thermodynamics and kinetics of layered transition metal oxide electrodes: Alkali and alkaline-earth ion insertion into V2O5. J. Phys. Chem. C 118(34), 19599 (2014).

    Article  CAS  Google Scholar 

  44. N. Govind, M. Petersen, G. Fitzgerald, D. King-Smith, and J. Andzelm: A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 28(2), 250 (2003).

    Article  CAS  Google Scholar 

  45. B. Palosz and E. Salje: Lattice parameters and spontaneous strain in AX2 polytypes: CdI2, PbI2, SnS2 and SnSe2. J. Appl. Cryst. 22(6), 622 (1989).

    Article  CAS  Google Scholar 

  46. I. Lefebvre-Devos, J. Olivier-Fourcade, J.C. Jumas, and P. Lavela: Lithium insertion mechanism in SnS2. Phys. Rev. B 61(4), 3110–3116 (2000).

    Article  CAS  Google Scholar 

  47. K. Tibbetts, C.R. Miranda, Y.S. Meng, and G. Ceder: An ab initio study of lithium diffusion in titanium disulfide nanotubes. Chem. Mater. 19(22), 5302 (2007).

    Article  CAS  Google Scholar 

  48. C. Uthaisar, V. Barone, and J.E. Peralta: Lithium adsorption on zigzag graphene nanoribbons. J. Appl. Phys. 106(11), 113715 (2009).

    Article  CAS  Google Scholar 

  49. L.Z. Li, H. Li, J. Zhou, J. Lu, R. Qin, Z.X. Gao, and W.N. Mei: Electronic structure and stability of ultranarrow single-layer SnS2 nanaoribbons: A first-principles study. J. Comput. Theor. Nanosci. 7(10), 2100 (2010).

    Article  CAS  Google Scholar 

  50. F. Li, C.R. Cabrera, and Z. Chen: Theoretical design of MoO3-based high-rate lithium ion battery electrodes: The effect of dimensionality reduction. J. Mater. Chem. A 2(45), 19180 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Department of Defense (Grant W911NF-12-1-0083) and NSF (Grant EPS-1002410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongfang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, K., Li, F. & Chen, Z. Enhanced lithium adsorption/diffusion and improved Li capacity on SnS2 nanoribbons: A computational investigation. Journal of Materials Research 31, 878–885 (2016). https://doi.org/10.1557/jmr.2015.312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.312

Navigation