Skip to main content
Log in

Effect of transition metal ion doping on photocatalytic properties of In–Ti oxides

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nominal compositions of In2Ti1−xTmxO5−δ (0.0 ≤ x ≤ 0.2 and Tm = Fe3+ and Cr3+) were synthesized by ceramic route and characterized by relevant techniques. In2Ti1−xFexO5−δ samples were single phased isomorphic with In2TiO5 phase while Cr substitution has resulted in mixed phased compositions. Dynamic light scattering experiments showed the increase in proportion of smaller sized particles with the increase in extent of Fe substitution. Mössbauer spectra revealed that Fe exists in +3 oxidation state in substituted oxides. The band gap decreased from 3.2 (In2TiO5) to 2.1 eV (In2Ti0.8Fe0.2Ox−δ) and to 1.9 eV in case of Cr substitution (In2Ti0.8Cr0.2O5−δ) attributed to participation of Fe 3d/Cr 3d levels. Photocatalytic H2 generation was evaluated over the substituted oxides from water–methanol mixtures under UV–visible irradiation. The decreasing order of photocatalytic activity is as follows: 20% Fe (mol%) > 10% Fe > indium titanate ≈ 20% Cr > 10% Cr. The loading of Pt as cocatalyst on surface of most active photocatalyst, In2Ti0.8Fe0.2Ox−δ further enhanced the photocatlytic H2 yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. T. Hisatomi, J. Kubota, and K. Domen: Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520 (2014).

    Article  CAS  Google Scholar 

  2. F. Fresno, R. Portela, S. Suárez, and J.M. Coronado: Photocatalytic materials: Recent achievements and near future trends. J. Mater. Chem. A 2, 2863 (2014).

    Article  CAS  Google Scholar 

  3. A. Kudo and Y. Miseki: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009).

    Article  CAS  Google Scholar 

  4. K. Maeda and K. Domen: New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 111, 7851 (2007).

    Article  CAS  Google Scholar 

  5. X. Chen, S. Shen, L. Guo, and S.S. Mao: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503 (2010).

    CAS  Google Scholar 

  6. X. Li, T. Xia, C. Xu, J. Murowchick, and X. Chen: Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. Catal. Today 225, 64 (2014).

    Article  CAS  Google Scholar 

  7. L. Liu and X. Chen: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114, 9890 (2014).

    Article  CAS  Google Scholar 

  8. X. Chen, L. Liu, and F. Huang: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861 (2015).

    Article  CAS  Google Scholar 

  9. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2015).

    Article  CAS  Google Scholar 

  10. X. Chen, L. Liu, P.Y. Yu, and S.S. Mao: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).

    CAS  Google Scholar 

  11. X. Li, J. Wen, J. Low, Y. Fang, and J. Yu: Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 57, 70 (2014).

    Article  Google Scholar 

  12. X. Zhou, Q. Gao, X. Li, Y. Liu, S. Zhang, Y. Fang, and J. Li: Ultra-thin SiC layers covered graphene nanosheets as advanced photocatalysts for hydrogen evolution. J. Mater. Chem. A 3, 10999 (2015).

    Article  CAS  Google Scholar 

  13. X. Zhou, X. Li, Q. Gao, J. Yuan, J. Wen, Y. Fang, W. Liu, S. Zhang, and Y. Liu: Metal-free carbon nanotube-SiC nanowire heterostructures with enhanced photocatalytic H2 evolution under visible light irradiation. Catal. Sci. Technol. 5, 2798 (2015).

    Article  CAS  Google Scholar 

  14. S. Cao and J. Yu: g-C3N4-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 5, 2101 (2014).

    Article  CAS  Google Scholar 

  15. J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S.Z. Qiao: Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43, 7787 (2014).

    Article  CAS  Google Scholar 

  16. W-D. Wang, F-Q. Huang, C-M. Liu, X-P. Lin, and J-L. Shi: Preparation, electronic structure and photocatalytic activity of the In2TiO5 photocatalyst. Mater. Sci. Eng., B 139, 74 (2007).

    Article  CAS  Google Scholar 

  17. A.L. Linsebigler, G. Lu, and J.T. Yates, Jr.: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735 (1995).

    Article  CAS  Google Scholar 

  18. D-W. Kim, N. Enomoto, Z. Nakagawa, and K. Kawamura: Molecular dynamic simulation in titanium dioxide polymorphs: Rutile, brookite, and anatase. J. Am. Ceram. Soc. 79 (4), 1095 (1996).

    Article  CAS  Google Scholar 

  19. X. Lin, F. Huang, W. Wang, Y. Wang, Y. Xia, and J. Shi: Photocatalytic activities of M2Sb2O7 (M = Ca, Sr) for degrading methyl orange. Appl. Catal., A 313, 218 (2006).

    Article  CAS  Google Scholar 

  20. M.R. Pai, A. Singhal, A.M. Banerjee, R. Tiwari, G.K. Dey, A.K. Tyagi, and S.R. Bharadwaj: Synthesis, characterization and photocatalytic H2 generation over ternary indium titanate nanoparticles. J. Nanosci. Nanotechnol. 12, 1957 (2012).

    Article  CAS  Google Scholar 

  21. M.R. Pai, A.M. Banerjee, A.K. Tripathi, and S.R. Bharadwaj: Fundamentals and applications of the photocatalytic water splitting reaction. In Functional Materials: Preparations, Processing and Applications, S. Banerjee and A.K. Tyagi eds.; Elsevier Insights: New York, 2012; pp. 579–606.

    Chapter  Google Scholar 

  22. D-S. Lee, H-J. Chen, and Y-W. Chen: Photocatalytic reduction of carbon dioxide with water using InNbO4 catalyst with NiO and Co3O4 cocatalysts. J. Phys. Chem. Solids 73 661 (2012).

    Article  CAS  Google Scholar 

  23. Z. Zou, J. Ye, and H. Arakawa: Structural properties of InNbO4 and InTaO4: Correlation with photocatalytic and photophysical properties. Chem. Phys. Lett. 332, 271 (2000).

    Article  CAS  Google Scholar 

  24. Z. Zou, J. Ye, K. Sayama, and H. Arakawa: Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625 (2001).

    Article  CAS  Google Scholar 

  25. H-C. Chen, H-C. Chou, J.C.S. Wu, and H-Y. Lin: Sol-gel prepared InTaO4 and its photocatalytic characteristics. J. Mater. Res. 23 (5), 1364 (2008).

    Article  CAS  Google Scholar 

  26. J. Tang, Z. Zou, and J. Ye: Photophysical and photocatalytic properties of AgInW2O8. J. Phys. Chem. B 107, 14265 (2003).

    Article  CAS  Google Scholar 

  27. H. Zhang, X. Chen, Z. Li, L. Liu, T. Yu, and Z. Zou: Electronic structure and photocatalytic properties of In6WO12. J. Phys. Condens. Matter 19, 376213 (2007).

    Article  Google Scholar 

  28. J. Sato, N. Saito, H. Nishiyama, and Y. Inoue: Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration. I. Influences of preparation conditions on activity. J. Phys. Chem. B 107, 7965 (2003).

    Article  CAS  Google Scholar 

  29. A.M. Banerjee, M.R. Pai, A. Arya, and S.R. Bharadwaj: Photocatalytic H2 generation over In2TiO5, Ni substituted In2TiO5 and NiTiO3—a combined theoretical and experimental study. RSC Adv. 5, 61218 (2015).

    Article  CAS  Google Scholar 

  30. T. Gaewdang, J.P. Chaminade, P. Gravereau, A. Garcia, C. Fouassier, P. Hagenmuller, and R. Mahiou: Crystal structure and luminescent properties of indium titanate. Mat. Res. Bull. 28, 1051 (1993).

    Article  CAS  Google Scholar 

  31. M.R. Pai, J. Majeed, A.M. Banerjee, A. Arya, S. Bhattacharya, R. Rao, and S.R. Bharadwaj: Role of Nd3+ ions in modifying the band structure and photocatalytic properties of substituted indium titanates, In2(1–x)Nd2xTiO5 oxides. J. Phys. Chem. C 116, 1458 (2012).

    Article  CAS  Google Scholar 

  32. M.R. Pai, A.M. Banerjee, S.R. Bharadwaj, and S.K. Kulshreshtha: Synthesis, characterization, thermal stability and redox behavior of In3+2Ti4+1–xTm3+xO5–δ, (Tm = Fe3+ and Cr3+, 0.0 ≤ x ≤ 0.2) mixed-oxide catalysts. J. Mater. Res. 22, 1787 (2007).

    Article  CAS  Google Scholar 

  33. A.M. Banerjee, M.R. Pai, Jagannath, and S.R. Bharadwaj: Influence of Ni substitution on redox properties of In2(1−x) Ni2xTiO5−δ oxides. Thermochim. Acta 516, 40 (2011).

    Article  CAS  Google Scholar 

  34. M.R. Pai, B.N. Wani, B. Shreedhar, S. Singh, and N.M. Gupta: Catalytic and redox properties of nano-sized La0.8Sr0.2Mn1−xFexO3−δ mixed oxides synthesized by different routes. J. Mol. Catal. A: Chem. 246, 128 (2006).

    Article  CAS  Google Scholar 

  35. H. Taguchi, Y. Masunaga, K. Hirota, and O. Yamaguchi: Synthesis of perovskite type (La1−xCax)FeO3 (0 ≤ x ≤ 0.2) at low temperature. Mater. Res. Bull. 40, 773 (2005).

    Article  CAS  Google Scholar 

  36. M.Th. Paques-Ledent: Infrared and Raman studies of M2TiO5 compounds (M = rare earths and Y): Isotopic effect and group theoretical analysis. Spectrochim. Acta, Part A 32, 1339 (1976).

    Article  Google Scholar 

  37. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, and G.E. Muilenberg eds.: Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corp. Physical Electronics Division, New York, USA, 1979).

    Google Scholar 

  38. D.A. Skoog, F.J. Holler, and T.A. Nieman: Principles of Instrumental Analysis, 5th ed. (Thomson Asia Pte Ltd., Singapore, 2003); p. 419.

    Google Scholar 

  39. P. Kubelka: New contributions to the optics of intensely light-scattering materials. Part I. J. Opt. Soc. Am. 38, 448 (1948).

    Article  CAS  Google Scholar 

  40. J. Choi, H. Park, and M.R. Hoffmann: Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 114, 783 (2010).

    Article  CAS  Google Scholar 

  41. U. Shaislamov and B.L. Yang: CdS-sensitized single-crystalline TiO2 nanorods and polycrystalline nanotubes for solar hydrogen generation. J. Mater. Res. 28, 418 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors thank Dr. P. A. Hassan, Chemistry Division and Mr. Sher Singh Meena, Solid State Physics Division of BARC for recording dynamic light scattering and Mossbaeur spectra, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal Rajesh Pai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pai, M.R., Banerjee, A.M. & Bharadwaj, S.R. Effect of transition metal ion doping on photocatalytic properties of In–Ti oxides. Journal of Materials Research 30, 3259–3266 (2015). https://doi.org/10.1557/jmr.2015.307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.307

Navigation