Skip to main content
Log in

Mesoporous K/Fe–Al–O nanofibers by electrospinning of solution precursors

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanometer-sized fibers are recently getting increased attention in heterogeneous catalysis due to the superior transport properties and effective dispersion they offer. A key challenge in this application is creation of nanofibers with internal open porosity that can provide larger accessible catalytic surface and easier mass transport into the fibers. The synthesis of potassium doped iron/aluminum oxides ceramic nanofibers with mesoporous structure is presented herein. Uniform fiber mats were prepared by electrospinning (ES) using two different precursors: an aqueous solution of metal nitrates and an organic solution of metal acetylacetonates. The organic precursors gave rise to a promising mesoporous structure with fibers diameter mainly in the 300–400 nm range. Precursor viscosity was used as a stability indicator and its influence on the ES process was studied. Collection efficiency of as high as 90% was achieved. The increased understanding in fiber morphological evolution can open new possibilities in heterogeneous catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. E. Formo, Z. Peng, E. Lee, X. Lu, H. Yang, and Y. Xia: Direct oxidation of methanol on Pt nanostructures supported on electrospun nanofibers of anatase. J. Phys. Chem. C 112(27), 9970 (2008).

    Article  CAS  Google Scholar 

  2. E. Formo, P.H.C. Camargo, B. Lim, M. Jiang, and Y. Xia: Functionalization of ZrO2 nanofibers with Pt nanostructures: The effect of surface roughness on nucleation mechanism and morphology control. Chem. Phys. Lett. 476(1–3), 56 (2009).

    Article  CAS  Google Scholar 

  3. S. Chuangchote, J. Jitputti, T. Sagawa, and S. Yoshikawa: Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl. Mater. Interfaces 1(5), 1140 (2009).

    Article  CAS  Google Scholar 

  4. S. Zhan, D. Chen, X. Jiao, and C. Tao: Long TiO2 hollow fibers with mesoporous walls: Sol−Gel combined electrospun fabrication and photocatalytic properties. J. Phys. Chem. B 110(23), 11199 (2006).

    Article  CAS  Google Scholar 

  5. M.Y. Song, D.K. Kim, K.J. Ihn, S.M. Jo, and D.Y. Kim: Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology 15(12), 1861 (2004).

    Article  CAS  Google Scholar 

  6. M.Y. Song, D.K. Kim, K.J. Ihn, S.M. Jo, and D.Y. Kim: New application of electrospun TiO2 electrode to solid-state dye-sensitized solar cells. Synth. Met. 153(1–3), 77 (2005).

    Article  CAS  Google Scholar 

  7. M.Y. Song, D.K. Kim, S.M. Jo, and D.Y. Kim: Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment. Synth. Met. 155(3), 635 (2005).

    Article  CAS  Google Scholar 

  8. K. Onozuka: Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications. Nanotechnology 17(4), 1026 (2006).

    Article  CAS  Google Scholar 

  9. M.Y. Song, Y.R. Ahn, S.M. Jo, D.Y. Kim, and J. Ahn: TiO2 single-crystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells. Appl. Phys. Lett. 87(11), 113113 (2005).

    Article  Google Scholar 

  10. W. Zhang, R. Zhu, X. Liu, B. Liu, and S. Ramakrishna: Facile construction of nanofibrous ZnO photoelectrode for dye-sensitized solar cell applications. Appl. Phys. Lett. 95(4), 043304 (2009).

    Article  Google Scholar 

  11. Y. Gu, D. Chen, and X. Jiao: Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries. J. Phys. Chem. B 109(38), 17901 (2005).

    Article  CAS  Google Scholar 

  12. W. Zheng, Z. Li, H. Zhang, W. Wang, Y. Wang, and C. Wang: Electrospinning route for α-Fe2O3 ceramic nanofibers and their gas sensing properties. Mater. Res. Bull. 44(6), 1432 (2009).

    Article  CAS  Google Scholar 

  13. H. Fan, T. Zhang, X. Xu, and N. Lv: Fabrication of N-type Fe2O3 and P-type LaFeO3 nanobelts by electrospinning and determination of gas-sensing properties. Sens. Actuators, B 153(1), 83 (2011).

    Article  CAS  Google Scholar 

  14. R. Luoh and H.T. Hahn: Electrospun nanocomposite fiber mats as gas sensors. Compos. Sci. Technol. 66(14), 2436 (2006).

    Article  CAS  Google Scholar 

  15. G. Wang, X. Gou, J. Horvat, and J. Park: Facile synthesis and characterization of iron oxide semiconductor nanowires for gas sensing application. J. Phys. Chem. C 112(39), 15220 (2008).

    Article  CAS  Google Scholar 

  16. X. Zhang, H. Liu, S. Petnikota, S. Ramakrishna, and H.J. Fan: Electrospun Fe2O3-carbon composite nanofibers as durable anode materials for lithium ion batteries. J. Mater. Chem. A. 2(28), 10835 (2014).

    Article  CAS  Google Scholar 

  17. A. Mahapatra, B.G. Mishra, and G. Hota: Electrospun Fe2O3–Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution. J. Hazard. Mater. 258–259, 116 (2013).

    Article  Google Scholar 

  18. S. Chaudhari and M. Srinivasan: 1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries. J. Mater. Chem. 22(43), 23049 (2012).

    Article  CAS  Google Scholar 

  19. J. Sundaramurthy, P.S. Kumar, M. Kalaivani, V. Thavasi, S.G. Mhaisalkar, and S. Ramakrishna: Superior photocatalytic behaviour of novel 1D nanobraid and nanoporous α-Fe2O3 structures. RSC Adv. 2(21), 8201 (2012).

    Article  CAS  Google Scholar 

  20. H. Shao, X. Zhang, F. Chen, S. Liu, Y. Ji, Y. Zhu, and Y. Feng: Preparation of α-Fe2O3 nanotubes via electrospinning and research on their catalytic properties. Appl. Phys. A 108(4), 961 (2012).

    Article  CAS  Google Scholar 

  21. Y.K. Sung, B.W. Ahn, and T.J. Kang: Magnetic nanofibers with core (Fe3O4 nanoparticle suspension)/sheath (poly ethylene terephthalate) structure fabricated by coaxial electrospinning. J. Magn. Magn. Mater. 324(6), 916 (2012).

    Article  CAS  Google Scholar 

  22. S. Wang, C. Wang, B. Zhang, Z. Sun, Z. Li, X. Jiang, and X. Bai: Preparation of Fe3O4/PVA nanofibers via combining in-situ composite with electrospinning. Mater. Lett. 64(1), 9 (2010).

    Article  CAS  Google Scholar 

  23. B.W. Ahn and T.J. Kang: Preparation and characterization of magnetic nanofibers with iron oxide nanoparticles and poly(ethylene terephthalate). J. Appl. Polym. Sci. 125(2), 1567 (2012).

    Article  CAS  Google Scholar 

  24. X. Bai, J. Zhang, N. Ning, L. Zhang, T. Nishi, and M. Tian: Enhanced magnetic property of Fe3O4 nano-particles/elastomeric composite membrane by using electrospinning and in-situ crosslinking technique. J. Polym. Res. 21(5), 1 (2014).

    Article  CAS  Google Scholar 

  25. M.V. Landau, R. Vidruk, and M. Herskowitz: Sustainable production of green feed from carbon dioxide and hydrogen. ChemSusChem 7(3), 785 (2014).

    Article  CAS  Google Scholar 

  26. F. Morales and B.M. Weckhuysen: In Promotion Effects in Co-based Fischer-Tropsch Catalysis, Vol. 19; J.J. Spivey and K.M. Dooley eds. (Cambridge: The Royal Society of Chemistry, 2006), pp. 1–40.

    Google Scholar 

  27. J.J. Stanger: Effect of salts on the electrospinning of poly (vinyl alcohol). AIP Conf. Proc. 1151, 118 (2009).

    Article  CAS  Google Scholar 

  28. C.J. Angammana and S.H. Jayaram: Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Trans. Ind. Appl. 47(3), 1109 (2011).

    Article  CAS  Google Scholar 

  29. S. De Vrieze, T. Van Camp, A. Nelvig, B. Hagström, P. Westbroek, and K. De Clerck: The effect of temperature and humidity on electrospinning. J. Mater. Sci. 44(5), 1357 (2009).

    Article  Google Scholar 

  30. V.E. Kalayci, P.K. Patra, Y.K. Kim, S.C. Ugbolue, and S.B. Warner: Charge consequences in electrospun polyacrylonitrile (PAN) nanofibers. Polymer 46(18), 7191 (2005).

    Article  CAS  Google Scholar 

  31. A. Gevorkyan, G.E. Shter, Y. Shmueli, A. Buk, R. Meir, and G.S. Grader: Branching effect and morphology control in electrospun PbZr0.52Ti0.48O3 nanofibers. J. Mater. Res. 29(16), 1721 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Supported by the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation (Grant No. 152/11), Israel Ministry of Infrastructures, Energy and Water (Grant No. 880002) and by joint grant of the Council for Higher Education and by the Center for Absorption in Science (Israel) under the KAMEA program. Authors acknowledge the support of the RBNI, the Adelis Foundation and the Grand Technion Energy Program (GTEP) and the Arturo Gruenbaum Chair in Material Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon S. Grader.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halperin, V., Shter, G.E., Beilin, V. et al. Mesoporous K/Fe–Al–O nanofibers by electrospinning of solution precursors. Journal of Materials Research 30, 3142–3150 (2015). https://doi.org/10.1557/jmr.2015.296

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.296

Navigation