Skip to main content
Log in

Fracture toughness of nanocrystalline metal matrix composites reinforced by aligned carbon nanotubes

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Experimental observations have shown that carbon nanotubes (CNTs)/Al nanocomposites with high level ordered nanolaminates exhibit greatly improved plasticity. The increased plasticity is mainly attributed to enhanced dislocation storage capability and two-dimensional alignment of the reinforcement. Here a theoretical model is proposed with interactions between aligned CNTs and grain boundary dislocations emitted from a crack tip taken into consideration to investigate crack blunting and fracture toughness in nanocrytalline metal matrix composites (MMCs). The critical shear stress for emission of first dislocation from intersections between a long, flat crack and aligned CNTs is quantitatively characterized. The final equilibrium positions and maximum numbers of emitted dislocations for different orientation angles and microstructures of aligned reinforcement are evaluated. In addition, the dependence of enhanced fracture toughness on effective gliding distance of emitted dislocations is also determined. The results show that the existence of aligned CNTs can lead to an increase of critical crack intensity factor by 77% than that in dislocation free case under certain conditions. The model may provide a basis understanding of ductility in aligned CNTs-reinforced nanocrystalline MMCs on respective of emission and motion of dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. I.A. Ovid’ko: Review on the fracture processes in nanocrystalline materials. J. Mater. Sci. 42, 1694 (2007).

    Article  CAS  Google Scholar 

  2. J.A. Sharon, H.A. Padilla, and B.L. Boyce: Interpreting the ductility of nanocrystalline metals 1. J. Mater. Res. 28 (12), 1539 (2013).

    Article  CAS  Google Scholar 

  3. W.W. Gerberich, J. Michler, W.M. Mook, R. Ghisleni, F. Östlund, D.D. Stauffer, and R. Ballarini: Scale effects for strength, ductility, and toughness in “brittle” materials. J. Mater. Res. 24 (03), 898 (2011).

    Article  Google Scholar 

  4. J.D. Kuntz, G-D. Zhan, and A.K. Mukherjee: Nanocrystalline-matrix ceramic composites for improved fracture toughness. MRS Bull. 29 (1), 22 (2004).

    Article  CAS  Google Scholar 

  5. Y. Wu, J. Zhou, H. Liu, X. Pang, S. Zhang, Y. Wang, L. Wang, and S. Dong: The effects of intergranular sliding on the fracture toughness of nanocrystalline materials with finest grains. J. Mater. Res. 29 (09), 1086 (2014).

    Article  CAS  Google Scholar 

  6. Y.G. Liu, J.Q. Zhou, and T.D. Shen: A combined dislocation–cohesive zone model for fracture in nanocrystalline materials. J. Mater. Res. 27 (04), 694 (2012).

    Article  CAS  Google Scholar 

  7. Y.G. Liu, J.Q. Zhou, T.D. Shen, and D. Hui: Effects of ultrafine nanograins on the fracture toughness of nanocrystalline materials. J. Mater. Res. 26 (14), 1734 (2011).

    Article  CAS  Google Scholar 

  8. I.A. Ovid’ko, N.V. Skiba, and A.K. Mukherjee: Nucleation of nanograins near cracks in nanocrystalline materials. Scr. Mater. 62 (6), 387 (2010).

    Article  CAS  Google Scholar 

  9. M. Yu, Q. Fang, H. Feng, and Y. Liu: Effect of special rotational deformation on dislocation emission from a semielliptical blunt crack tip in nanocrystalline solids. J. Mater. Res. 28 (06), 798 (2013).

    Article  CAS  Google Scholar 

  10. S. Cheng, H. Choo, Y.H. Zhao, X.L. Wang, Y.T. Zhu, Y.D. Wang, J. Almer, P.K. Liaw, J.E. Jin, and Y.K. Lee: High ductility of ultrafine-grained steel via phase transformation. J. Mater. Res. 23 (06), 1578 (2011).

    Article  CAS  Google Scholar 

  11. Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu: Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 18 (17), 2280 (2006).

    Article  CAS  Google Scholar 

  12. Y.H. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y. Zhu, Y. Zhou, and E.J. Lavernia: High tensile ductility and strength in bulk nanostructured nickel. Adv. Mater. 20 (16), 3028 (2008).

    Article  CAS  Google Scholar 

  13. I.A. Ovid’ko and A.G. Sheinerman: Ductile vs. brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials. Acta Mater. 58 (16), 5286 (2010).

    Article  CAS  Google Scholar 

  14. I.A. Ovid’ko and A.G. Sheinerman: Grain size effect on crack blunting in nanocrystalline materials. Scr. Mater. 60 (8), 627 (2009).

    Article  CAS  Google Scholar 

  15. Y.G. Liu, J.Q. Zhou, L. Wang, S. Zhang, and Y. Wang: Grain size dependent fracture toughness of nanocrystalline materials. Mater. Sci. Eng., A 528 (13–14), 4615 (2011).

    Article  CAS  Google Scholar 

  16. H. Feng, Q.H. Fang, L.C. Zhang, and Y.W. Liu: Effect of cooperative grain boundary sliding and migration on emission of dislocations from a crack tip in nanocrystalline materials. Mech. Mater. 61, 39 (2013).

    Article  Google Scholar 

  17. S.V. Bobylev, A.K. Mukherjee, I.A. Ovid’ko, and A.G. Sheinerman: Effects of intergrain sliding on crack growth in nanocrystalline materials. Int. J. Plast. 26 (11), 1629 (2010).

    Article  CAS  Google Scholar 

  18. Y.G. Liu, J.Q. Zhou, and T.D. Shen: Effect of nano-metal particles on the fracture toughness of metal–ceramic composite. Mater. Des. 45, 67 (2013).

    Article  CAS  Google Scholar 

  19. L. Wang, J.Q. Zhou, S. Zhang, H.X. Liu, and S.H. Dong: Effect of dislocation–GB interactions on crack blunting in nanocrystalline materials. Mater. Sci. Eng., A 592, 128 (2014).

    Article  CAS  Google Scholar 

  20. J. Ye, B.Q. Han, Z. Lee, B. Ahn, S.R. Nutt, and J.M. Schoenung: A tri-modal aluminum based composite with super-high strength. Scr. Mater. 53 (5), 481 (2005).

    Article  CAS  Google Scholar 

  21. Y. Li, Y.H. Zhao, V. Ortalan, W. Liu, Z.H. Zhang, R.G. Vogt, N.D. Browning, E.J. Lavernia, and J.M. Schoenung: Investigation of aluminum-based nanocomposites with ultra-high strength. Mater. Sci. Eng., A 527 (1–2), 305 (2009).

    Article  CAS  Google Scholar 

  22. J. Zhao, J-W. Jiang, L. Wang, W. Guo, and T. Rabczuk: Coarse-grained potentials of single-walled carbon nanotubes. J. Mech. Phys. Solids 71, 197 (2014).

    Article  CAS  Google Scholar 

  23. J. Zhao, L. Lu, and T. Rabczuk: Binding energy and mechanical stability of single- and multi-walled carbon nanotube serpentines. J. Chem. Phys. 140 (20), 204704 (2014).

    Article  CAS  Google Scholar 

  24. Q. Li and B. Tian: Compression behavior of magnesium/carbon nanotube composites. J. Mater. Res. 28 (14), 1877 (2013).

    Article  CAS  Google Scholar 

  25. T. Kuzumaki, K. Miyazawa, H. Ichinose, and K. Ito: Processing of carbon nanotube reinforced aluminum composite. J. Mater. Res. 13, 2445 (1998).

    Article  CAS  Google Scholar 

  26. A. Goyal, D.A. Wiegand, F.J. Owens, and Z. Iqbal: Enhanced yield strength in iron nanocomposite with in situ grown single-wall carbon nanotubes. J. Mater. Res. 21 (02), 522 (2011).

    Article  Google Scholar 

  27. H.J. Choi, J.H. Shin, B.H. Min, J. Park, and D.H. Bae: Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites. J. Mater. Res. 24 (08), 2610 (2011).

    Article  Google Scholar 

  28. D.J. Woo, J.P. Hooper, S. Osswald, B.A. Bottolfson, and L.N. Brewer: Low temperature synthesis of carbon nanotube-reinforced aluminum metal composite powders using cryogenic milling. J. Mater. Res. 29 (22), 2644 (2014).

    Article  CAS  Google Scholar 

  29. K. Kang, G. Bae, and C. Lee: Strengthening mechanisms of multiwalled carbon nanotube-reinforced Cu nanocomposite coatings during kinetic spray consolidation. J. Mater. Res. 27 (18), 2375 (2012).

    Article  CAS  Google Scholar 

  30. S. Dong, J. Zhou, H. Liu, and D. Qi: Computational prediction of waviness and orientation effects in carbon nanotube reinforced metal matrix composites. Comput. Mater. Sci. 101, 8 (2015).

    Article  CAS  Google Scholar 

  31. Z.W. Xue, L.D. Wang, P.T. Zhao, S.C. Xu, J.L. Qi, and W.D. Fei: Microstructures and tensile behavior of carbon nanotubes reinforced Cu matrix composites with molecular-level dispersion. Mater. Des. 34, 298 (2012).

    Article  CAS  Google Scholar 

  32. T. Borkar, J. Hwang, J.Y. Hwang, T.W. Scharf, J. Tiley, S.H. Hong, and R. Banerjee: Strength versus ductility in carbon nanotube reinforced nickel matrix nanocomposites. J. Mater. Res. 29 (06), 761 (2014).

    Article  CAS  Google Scholar 

  33. H.J. Choi and D.H. Bae: Strengthening and toughening of aluminum by single-walled carbon nanotubes. Mater. Sci. Eng., A 528 (6), 2412 (2011).

    Article  CAS  Google Scholar 

  34. L. Jiang, Z. Li, G. Fan, L. Cao, and D. Zhang: Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scr. Mater. 66 (6), 331 (2012).

    Article  CAS  Google Scholar 

  35. W.A. Curtin and B.W. Sheldon: CNT-reinforced ceramics and metals. Mater. Today 7 (11), 44 (2004).

    Article  CAS  Google Scholar 

  36. S.H. Dong, J.Q. Zhou, D. Hui, Y. Wang, and S. Zhang: Size dependent strengthening mechanisms in carbon nanotube reinforced metal matrix composites. Composites, Part A 68, 356 (2015).

    Article  CAS  Google Scholar 

  37. M.Y. Gutkin and I.A. Ovid’ko: Dislocation mechanism of hollow fiber sliding during ceramic nanocomposite fracture. Phys. Solid State 50 (11), 2053 (2008).

    Article  CAS  Google Scholar 

  38. N.V. Viet and W.S. Kuo: Load transfer in fractured carbon nanotubes under tension. Composites, Part B 43 (2), 332 (2012).

    Article  CAS  Google Scholar 

  39. Y.L. Chen, B. Liu, Y. Huang, and K.C. Hwang: Fracture toughness of carbon nanotube-reinforced metal- and ceramic-matrix composites. J. Nanomater. 2011, 746029 (2011).

    Google Scholar 

  40. Y.L. Chen, B. Liu, X.Q. He, Y. Huang, and K.C. Hwang: Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites. Compos. Sci. Technol. 70 (9), 1360 (2010).

    Article  CAS  Google Scholar 

  41. C.S. Goh, J. Wei, L.C. Lee, and M. Gupta: Ductility improvement and fatigue studies in Mg-CNT nanocomposites. Compos. Sci. Technol. 68 (6), 1432 (2008).

    Article  CAS  Google Scholar 

  42. M.Y. Gutkin and I.A. Ovid’ko: Glide of hollow fibers at the bridging stage of fracture in ceramic nanocomposites. Scr. Mater. 59 (4), 414 (2008).

    Article  CAS  Google Scholar 

  43. S.H. Dong, J.Q. Zhou, D. Hui, X.M. Pang, Q. Wang, S. Zhang, and L. Wang: Interaction between edge dislocations and amorphous interphase in carbon nanotubes reinforced metal matrix nanocomposites incorporating interface effect. Int. J. Solids Struct. 51 (5), 1149 (2014).

    Article  CAS  Google Scholar 

  44. C.C. Koch: Structural nanocrystalline materials: An overview. J. Mater. Sci. 42 (5), 1403 (2007).

    Article  CAS  Google Scholar 

  45. H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki: Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon 47 (3), 570 (2009).

    Article  CAS  Google Scholar 

  46. A.L. Vasiliev, R. Poyato, and N.P. Padture: Single-wall carbon nanotubes at ceramic grain boundaries. Scr. Mater. 56 (6), 461 (2007).

    Article  CAS  Google Scholar 

  47. S.X. Mao and M.Z. Li: Effects of dislocation shielding on interface crack initiation and growth in metal/ceramic layered materials. J. Mech. Phys. Solids 47 (11), 2351 (1999).

    Article  CAS  Google Scholar 

  48. I.H. Lin and R. Thomson: Cleavage, dislocation emission, and shielding for cracks under general loading. Acta Metall. 34 (2), 187 (1986).

    Article  CAS  Google Scholar 

  49. M.Y. Gutkin and A.E. Romanov: Straight edge dislocation in a thin two-phase plate I. elastic stress fields. Phys. Status Solidi A 125, 107 (1991).

    Article  Google Scholar 

  50. P.B. Chowdhury, H. Sehitoglu, R.G. Rateick, and H.J. Maier: Modeling fatigue crack growth resistance of nanocrystalline alloys. Acta Mater. 61 (7), 2531 (2013).

    Article  CAS  Google Scholar 

  51. J.R. Rice and R. Thomson: Ductile versus brittle behaviour of crystals. Philos. Mag. 29 (1), 73 (1974).

    Article  CAS  Google Scholar 

  52. G.R. Irwin: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361 (1957).

    Google Scholar 

  53. T-Y. Zhang and J.C.M. Li: Image forces and shielding effects of an edge dislocation near a finite length crack. Acta Metall. Mater. 39 (11), 2739 (1991).

    Article  CAS  Google Scholar 

  54. G.C. Hasson and C. Goux: Interfacial energies of tilt boundaries in aluminium. Experimental and theoretical determination. Scr. Metall. 5 (10), 889 (1971).

    Article  CAS  Google Scholar 

  55. L.X. Shen and J. Li: Transversely isotropic elastic properties of multiwalled carbon nanotubes. Phys. Rev. B 71 (3), 035412 (2005).

    Article  CAS  Google Scholar 

  56. Y.G. Liu, J.Q. Zhou, T.D. Shen, and D. Hui: Grain rotation dependent fracture toughness of nanocrystalline materials. Mater. Sci. Eng., A 528 (25–26), 7684 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Key Project of Chinese Ministry of Education (211061), National Natural Science Foundation of China (10502025, 10872087, 11272143), Program for Chinese New Century Excellent Talents in university (NCET-12-0712), Ph.D. Programs Foundation of Ministry of Education of China (20133221110008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiu Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Zhou, J., Hui, D. et al. Fracture toughness of nanocrystalline metal matrix composites reinforced by aligned carbon nanotubes. Journal of Materials Research 30, 3267–3276 (2015). https://doi.org/10.1557/jmr.2015.294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.294

Navigation