Skip to main content
Log in

In-situ study of microscale fracture of diffusion aluminide bond coats: Effect of platinum

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The influence of Pt layer thickness on the fracture behavior of PtNiAl bond coats was studied in situ using clamped micro-beam bend tests inside a scanning electron microscope (SEM). Clamped beam bending is a fairly well established micro-scale fracture test geometry that has been previously used in determination of fracture toughness of Si and PtNiAl bond coats. The increasing amount of Pt in the bond coat matrix was accompanied by several other microstructural changes such as an increase in the volume fraction of α-Cr precipitate particles in the coating as well as a marginal decrease in the grain size of the matrix. In addition, Pt alters the defect chemistry of the B2-NiAl structure, directly affecting its elastic properties. A strong correlation was found between the fracture toughness and the initial Pt layer thickness associated with the bond coat. As the Pt layer thickness was increased from 0 to 5 µm, resulting in increasing Pt concentration from 0 to 14.2 at.% in the B2-NiAl matrix and changing α-Cr precipitate fraction, the initiation fracture toughness (KIC) was seen to rise from 6.4 to 8.5 MPa·m1/2. R-curve behavior was observed in these coatings, with KIC doubling for a crack propagation length of 2.5 µm. The reasons for the toughening are analyzed to be a combination of material’s microstructure (crack kinking and bridging due to the precipitates) as well as size effects, as the crack approaches closer to the free surface in a micro-scale sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. B.N. Jaya, V. Jayaram, and S.K. Biswas: A new method for fracture toughness determination of graded (Pt,Ni)Al bond coats by microbeam bend tests. Philos. Mag. 92, 3326–3345 (2012).

    Article  Google Scholar 

  2. D.K. Das: Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys. Prog. Mater. Sci. 58, 151–182 (2013).

    Article  CAS  Google Scholar 

  3. B. Gleeson, W. Wang, S. Hayashi, and D. Sordelet: Effects of platinum on the interdiffusion and oxidation behavior of Ni–Al based alloys. Mater. Sci. Forum 461–464, 213–222 (2004).

    Article  Google Scholar 

  4. D. Pan, M.W. Chen, P.K. Wright, and K.J. Hemker: Evolution of a diffusion aluminide bond coat for thermal barrier coatings during thermal cycling. Acta Mater. 51, 2205–2217 (2003).

    Article  CAS  Google Scholar 

  5. J. Riethmüller, G. Dehm, E.E. Affeldt, and E. Arzt: Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings. Int. J. Mater. Res. 97, 689–698 (2006).

    Google Scholar 

  6. B. Passilly, P. Kanoute, F.H. Leroy, and R. Mevrel: High temperature instrumented microindentation: Applications to thermal barrier coating constituent materials. Philos. Mag. 86, 5739–5752 (2006).

    Article  CAS  Google Scholar 

  7. M. Zhang and A.H. Heuer: Spatially varying microhardness in a platinum-modified nickel aluminide bond coat in a thermal barrier coating system. Scr. Mater. 54, 1265–1269 (2006).

    Article  CAS  Google Scholar 

  8. M.Z. Alam, S.V. Kamat, V. Jayaram, and D.K. Das: Micromechanisms of fracture and strengthening in free-standing Pt-aluminide bond coats under tensile loading. Acta Mater. 67, 278–296 (2014).

    Article  CAS  Google Scholar 

  9. D.B. Miracle and R. Darolia: NiAl and its Alloys. Intermetallic Compounds (John Wiley & Sons, Chichester, UK, 1995), chapter 3, p. 55.

    Google Scholar 

  10. R.D. Noebe, R.R. Bowman, and M.V. Nathal: Physical and mechanical properties of the B2 compound NiAl. Int. Mater. Rev. 38, 193–232 (1993).

    Article  CAS  Google Scholar 

  11. F. Iqbal, J. Ast, M. Goeken, and K. Durst: In-situ microcantilever tests to study fracture properties of NiAl single crystals. Acta Mater. 60, 1193–1200 (2012).

    Article  CAS  Google Scholar 

  12. J. Ast, T. Przybilla, V. Maier, K. Durst, and M. Goeken: Microcantilever bending experiments in NiAl—Evaluation, size effects, and crack tip plasticity. J. Mater. Res. 29, 2129–2140 (2014).

    Article  CAS  Google Scholar 

  13. B.N. Jaya, C. Kirchlechner, and G. Dehm: Can microscale fracture tests provide reliable fracture toughness values? A case study in silicon. J. Mater. Res. 30, 686–698 (2015).

    Article  CAS  Google Scholar 

  14. C. Jiang, M.F. Besser, D.J. Sordelet, and B. Gleeson: A combined first-principles and experimental study of the lattice site preference of Pt in B2 NiAl. Acta Mater. 53, 2101–2109 (2005).

    Article  CAS  Google Scholar 

  15. B.D. Cullity: Elements of X Ray Diffraction (Addison-Wesley Publishing Company, Inc., Reading, MA, 1956).

    Google Scholar 

  16. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  17. B.N. Jaya and V. Jayaram: Crack stability in edge notched clamped beam specimen: Modeling and experiments. Int. J. Fract. 188, 213–228 (2014).

    Article  CAS  Google Scholar 

  18. B.N. Jaya, S. Bhowmick, S.A. S Asif, O.L. Warren, and V. Jayaram: Optimisation of clamped beam geometry for fracture toughness testing of micron-scale samples. Philos. Mag. 95, 1945–1966 (2015).

    Article  CAS  Google Scholar 

  19. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall: A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J. Am. Ceram. Soc. 64 (9), 533–538 (1981).

    Article  CAS  Google Scholar 

  20. D. Baither, F. Ernst, T. Wagner, M. Rühle, M. Bartsch, and U. Messerschmidt: Micromechanisms of fracture in NiAl studied by in situ straining experiments in an HVEM. Intermetallics 7, 479–489 (1999).

    Article  CAS  Google Scholar 

  21. R. Webler, M. Krottenthaler, S. Neumeier, K. Durst, and M. Göken: Local fracture toughness and residual stress measurements on NiAl bond coats by micro cantilever and FIB based bar milling tests. In TMS Conference Proceedings on International Symposium Superalloys; TMS: Warrendale, PA, 2012; p. 93.

    Google Scholar 

  22. A.G. Fox and M.A. Tabbernor: The bonding charge density of β′NiAl. Acta Metall. Mater. 39, 669–678 (1991).

    Article  CAS  Google Scholar 

  23. K. Ternes, Z.Y. Xie, and D. Farkas: Atomistic modelling of stoichiometry effects on dislocation core structure in NiAl. Mater. Sci. Eng., A 192–193, 125–133 (1995).

    Article  Google Scholar 

  24. M. Kogachi, M.T. Tanahashi, Y. Shirai, and M. Yamaguchi: Determination of vacancy concentration and defect structure in the B2 type NiAl β-phase alloys. Scr. Mater. 34, 243–248 (1996).

    Article  CAS  Google Scholar 

  25. C. Jiang, D.J. Sordelet, and B. Gleeson: Effects of Pt on the elastic properties of B2 NiAl: A combined first-principles and experimental study. Acta Mater. 54, 2361–2369 (2006).

    Article  CAS  Google Scholar 

  26. J. Feng, B. Xiao, J. Chen, Y. Dua, J. Yua, and R. Zhou: Stability, thermal and mechanical properties of PtxAly compounds. Mater. Des. 32, 3231–3239 (2011).

    Article  CAS  Google Scholar 

  27. J.S. Tian, G.M. Han, H. Wei, Q. Zheng, T. Jin, X.F. Sun, and Z.Q. Hu: Effects of alloying elements on the electronic structure and ductility of NiAl compounds investigated by X-ray absorption fine structure. Philos. Mag. 93, 2161–2171 (2013).

    Article  CAS  Google Scholar 

  28. G.E. Dieter: Mechanical Metallurgy (McGraw Hill, NY, 1961).

    Book  Google Scholar 

  29. www.periodictable.com.

  30. R. Yu and P.Y. Hou: First principles calculation of the effect of Pt on NiAl surface energy and the site preference of Pt. Appl. Phys. Lett. 91, 011907-1-011907-3 (2007).

  31. J.D. Cotton, R.D. Noebe, and M.J. Kaufman: The effects of chromium on NiAl intermetallic alloys: Part II. Slip systems. Intermetallics 1, 117–126 (1993).

    Article  CAS  Google Scholar 

  32. C.K. Han: Precipitation behavior of B2-ordered aluminide. Met. Mater. Int. 12, 467–475 (2006).

    Article  CAS  Google Scholar 

  33. S. Suresh: Fatigue crack deflection and fracture surface contact. Metall. Trans. A 16, 249–260 (1985).

    Article  Google Scholar 

  34. S.M. Wiederhorn: Brittle fracture and toughening mechanisms in ceramics. Annu. Rev. Mater. Sci. 14, 373–403 (1984).

    Article  CAS  Google Scholar 

  35. J.D. Rigney and J.J. Lewandowski: Effects of reinforcement size and distribution on fracture toughness of composite nickel aluminide intermetallics. Mater. Sci. Eng., A 158, 31–45 (1992).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr D.K. Das and Dr Md. Z. Alam of the Defense Metallurgical Research Laboratories, Hyderabad, India for providing the bond coat samples. B.N. Jaya and V. Jayaram thank the Defense Research & Development Organization, India for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balila Nagamani Jaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagamani Jaya, B., Bhowmick, S., Asif, S.A.S. et al. In-situ study of microscale fracture of diffusion aluminide bond coats: Effect of platinum. Journal of Materials Research 30, 3343–3353 (2015). https://doi.org/10.1557/jmr.2015.285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.285

Navigation