Skip to main content
Log in

Effect of cooling rates on solidification and microstructure of rapidly solidified Mg57Zn37Y6 quasicrystal alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The influence of cooling rates on the solidification and microstructure of rapidly solidified quasicrystal alloys with a nominal compositions of Mg57Zn37Y6 (at.%) prepared by melt spinning method was investigated. The microstructure, phase constitution, phase transition, and phase structure of the alloys were examined by means of scanning electron microscopy, x-ray diffraction, energy dispersive spectrometer, differential scanning calorimetry, and transmission electron microscopy. The results show that rapid solidification refines and homogenizes the microstructure of Mg57Zn37Y6 alloys, compared to the conventionally-cast master alloy. With the increasing cooling rate of rapid solidification, the thickness of the ribbon decreases greatly and a larger amount of I-phase can be formed. α-Mg, MgZn, and icosahedral phases are found in the as-cast alloy, but the MgZn phase is absent from rapidly solidified alloys. The I-phase in both as-cast and rapidly solidified alloys can precipitate directly from the melt during the solidification process. A higher cooling rate can lead to a large degree of supercooling, resulting in a decreased phase transition temperature and a large number of icosahedral short-range orders (ISROs). ISROs can act as templates in liquid and promote the nucleation of I-phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. K. Hono, C.L. Mendis, T.T. Sasaki, and K. Oh-ishi: Towards the development of heat-treatable high-strength wrought Mg alloys. Scr. Mater. 63, 710 (2010).

    Article  CAS  Google Scholar 

  2. D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 (1984).

    Article  CAS  Google Scholar 

  3. Z.P. Luo, S.Q. Zhang, Y.L. Tang, and D.S. Zhao: Quasicrystals in as-cast Mg–Zn–RE alloys. Scr. Metall. Mater. 28, 1513 (1993).

    Article  CAS  Google Scholar 

  4. A.P. Tsai, A. Niikura, A. Inoue, and T. Masumoto: Stoichiometric icosahedral phase in the Zn–Mg–Y system. J. Mater. Res. 12, 1468 (1997).

    Article  CAS  Google Scholar 

  5. M. Wollgarten, M. Beyss, and K. Urban: Direct evidence for plastic deformation of quasicrystals by means of a dislocation mechanism. Phys. Rev. Lett. 71, 549 (1993).

    Article  CAS  Google Scholar 

  6. S. Takeuchi, H. Iwanaga, and T. Shibuya: Hardness of quasicrystals. Jpn. J. Appl. Phys. 30, 561 (1991).

    Article  CAS  Google Scholar 

  7. J.M. Dubois, S.S. Kang, and J. von Stebut: Quasicrystalline low-friction coatings. J. Mater. Sci. Lett. 10, 537 (1991).

    Article  CAS  Google Scholar 

  8. T. Yoshida, K. Itoh, R. Tamura, and S. Takeuchi: Plastic deformation and hardness in Mg-Zn-(Y, Ho) icosahedral quasicrystals. Mater. Sci. Eng., A 786, 294 (2000).

    Google Scholar 

  9. W. Yang, F. Liu, H.F. Wang, B.P. Lu, and G.C. Yang: Non-equilibrium transformation kinetics and primary grain size distribution in the rapid solidification of Fe–B hypereutectic alloy. J. Alloys Compd. 509 (6), 2903 (2011).

    Article  CAS  Google Scholar 

  10. E.J. Lavernia and T.S. Srivatsan: The rapid solidification processing of materials: Science, principles, technology, advances, and applications. J. Mater. Sci. 45 (2), 287 (2010).

    Article  CAS  Google Scholar 

  11. M. Gogebakan, O. Uzun, T. Karaaslan, and M. Keskin: Rapidly solidified Al-6.5 wt.% Ni alloy. J. Mater. Process. Technol. 142 (1), 87 (2003).

    Article  CAS  Google Scholar 

  12. X.F. Guo and D. Shechtman: Extruded high-strength solid materials based on magnesium with zinc, yttrium, and cerium additives. Glass Phys. Chem. 31 (1), 44 (2005).

    Article  CAS  Google Scholar 

  13. S.W. Lee, H.Y. Wang, Y.L. Chen, J.W. Yeh, and C.F. Yang: An Mg–Al–Zn alloy with very high specific strength and superior high-strain-rate superplasticity processed by reciprocating extrusion. Adv. Eng. Mater. 6 (12), 948 (2004).

    Article  CAS  Google Scholar 

  14. D.Q. Wan, G.C. Yang, L. Lin, and Z.G. Feng: Equilibrium and non-equilibrium microstructures of Mg–Zn–Y quasicrystal alloy. Mater. Lett. 62, 1711 (2008).

    Article  CAS  Google Scholar 

  15. S. Yi, E.S. Park, J.B. Ok, W.T. Kim, and D.H. Kim: (Icosahedral phase + α-Mg) two phase microstructures in the Mg–Zn–Y ternary system. Mater. Sci. Eng., A 300, 312 (2001).

    Article  Google Scholar 

  16. Z.M. Zhang, C.J. Xu, and X.F. Guo: Microstructure of Mg-6.4Zn-1.1Y alloy fabrication by rapid solidification and reciprocating extrusion. Acta Metall. Sin. (Engl. Lett.) 21, 30 (2008).

    Article  CAS  Google Scholar 

  17. Z.G. Liu, L.H. Chai, and Y.Y. Chen: Effect of cooling rate and Y element on the microstructure of rapidly solidified TiAl alloys. J. Alloys Compd. 504, 491 (2010).

    Article  Google Scholar 

  18. J.W. Geng, X.Y. Teng, G.R. Zhou, and Z.W. Zhao: Solidification and microstructure of as-cast Mg65Zn32Y3 quasicrystal alloy. Phys. B 420, 64 (2013).

    Article  CAS  Google Scholar 

  19. C.R. Li, N.P. Lu, Q. Xu, J. Mei, W.J. Dong, J.L. Fu, and Z.X. Cao: Decahedral and icosahedral twin crystals of silver: Formation and morphology evolution. J. Cryst. Growth 319, 88 (2011).

    Article  CAS  Google Scholar 

  20. M.A. Taha: Geometry of melt-spun ribbons. Mater. Sci. Eng., A 134, 1162 (1991).

    Article  Google Scholar 

  21. B. Cantor, W.T. Kim, B.P. Bewlay, and A.G. Gillen: Microstructure-cooling rate correlations in melt-spun alloys. J. Mater. Sci. 26 (5), 1266 (1991).

    Article  CAS  Google Scholar 

  22. A.G. Gillen and B. Cantor: Photocalorimetric cooling rate measurements on a Ni-5wt.% Al alloy rapidly solidified by melt spinning. Acta Metall. 33 (10), 1813 (1985).

    Article  CAS  Google Scholar 

  23. G. Liu, Z.Z. Zhang, Q. Chen, H. Zhang, C.H. Yin, and S.M. Zhang: Microstructures and properties of rapidly solidified Mg–Zn–Y–Zr alloy ribbons. Mater. Eng. 9, 38 (2009). [In Chinese].

    Article  CAS  Google Scholar 

  24. J.W. Geng, X.Y. Teng, G.R. Zhou, D.G. Zhao, and J.F. Leng: Growth mechanism of an icosahedral quasicrystal and solute partitioning in a Mg-rich Mg–Zn–Y alloy. J. Mater. Res. 29, 942 (2014).

    Article  CAS  Google Scholar 

  25. F. Shi, X.F. Guo, and Z.M. Zhang: Study on the quasicrytal phase in Mg74Zn25Y1 alloy. Chin. J. Mech. Eng. 39 (8), 138 (2003).

    Article  CAS  Google Scholar 

  26. M.R. Li and K.H. Kuo: Intermetallic phases and phase reactions in Zn–Mg (<40 at.%)-Y (<20 at.%) region. J. Alloys Compd. 432, 81 (2007).

    Article  CAS  Google Scholar 

  27. J.B. Ok, I.J. Kim, S. Yi, T.W. Kim, and D.H. Kim: Solidification microstructure of as-cast Mg–Zn–Y alloys. Philos. Mag. A 83, 2359 (2003).

    Article  CAS  Google Scholar 

  28. S. Ranganathan and A. Inoue: An application of Pettifor structure maps for the identification of pseudo-binary quasicrystalline intermetallics. Acta Mater. 54, 3647 (2006).

    Article  CAS  Google Scholar 

  29. K. Chattopadhyay, N. Ravishankar, and R. Goswami: Shapes of quasicrystals. Prog. Cryst. Growth Charact. Mater. 34, 237 (1997).

    Article  CAS  Google Scholar 

  30. Y.C. Liu, G.C. Yang, Y.H. Zhou, T. Wang, D.S. Xu, and Q.Y. Xu: Growth mode of decagonal quasicrystal phase in laser resolidified Al72Ni12Co16 alloy. J. Cryst. Growth 207, 292 (1999).

    Article  CAS  Google Scholar 

  31. H. Klein, M. Audier, V. Simonet, F. Hippert, and R. Bellissent: Icosahedral order in a liquid metallic alloy: Molten AlPdMn quasicrystal. Phys. B 964, 241 (1998).

    Google Scholar 

  32. D. Holland-Moritz, J. Schroers, D.M. Herlach, B. Grushko, and K. Urban: Undercooling and solidification behaviour of melts of the quasicrystal-forming alloys Al–Cu–Fe and Al–Cu–Co. Acta Mater. 46 (5), 1601 (1998).

    Article  CAS  Google Scholar 

  33. O.S. Roik, S.M. Galushko, O.V. Samsonnikov, V.P. Kazimirov, and V.E. Sokolskii: Structure of liquid Al–Cu–Co alloys near the quasicrystal-forming range. J. Non-Cryst. Solids 357, 1147 (2011).

    Article  CAS  Google Scholar 

  34. J.W. Geng, X.Y. Teng, G.R. Zhou, and D.G. Zhao: Temperature dependence of the electrical resistivity of Mg–Zn–Y quasicrystal alloy. Mater. Lett. 132, 334 (2014).

    Article  CAS  Google Scholar 

  35. S.L. Ye, X.Y. Li, X.F. Bian, W.M. Wang, and L.J. Yin: Remelting treatment and heredity phenomenon in the formation of Fe78Si9B13 amorphous alloy. J. Alloys Compd. 562, 143 (2013).

    Article  CAS  Google Scholar 

  36. V.E. Dmitrienko, S.B. Astaf’ev, and M. Kléman: Growth, melting, and clustering of icosahedral quasicrystals: Monte Carlo simulations. Mater. Sci. Eng., A 294–296, 413 (2000).

    Article  Google Scholar 

  37. T. Egami: Icosahedral order in liquids. J. Non-Cryst. Solids 353, 3666 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The financial support for this work is provided by the National Natural Science Foundation of China (No. 51571102) and the Special Joint Funds of Natural Science Foundation of Shandong Province, China (ZR2013EML004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinying Teng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Teng, X. & Geng, J. Effect of cooling rates on solidification and microstructure of rapidly solidified Mg57Zn37Y6 quasicrystal alloy. Journal of Materials Research 30, 3324–3330 (2015). https://doi.org/10.1557/jmr.2015.283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.283

Navigation