Skip to main content
Log in

Producing nanostructured Co–Cr–W alloy surface layer by laser cladding and friction stir processing

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The laser cladding Co–Cr–W coating has coarse dendritic and network carbides, which can lead to crack and exfoliation easily, limiting the application of Co–Cr–W coating. In this work, friction stir processing (FSP) was carried out on a laser cladding Co–Cr–W alloy coating to modify its microstructure. FSP transforms the laser clad coarse dendritic grains (grain size: 2–4 μm) into nanograins (grain size: 50–200 nm) and crushes the network carbides into nanoparticles dispersed in Co-base solution. The microstructure and thickness of plastic surface layer are controllable by the condition of FSP. Moreover, a WCx reinforced Co–Cr–W thin layer was formed because the WC particles of stir tool were squeezed into the Co–Cr–W coating surface layer. More interestingly, when the FSP rotary speed was 1500 rpm, an interlocking bonding between Co–Cr–W coating and steel substrate was formed, which was favorable for the connection with substrate. The surface nanocrystallization significantly strengthened the laser clad Co–Cr–W alloy after FSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. A. Farnia, F.M. Ghaini, V. Ocelik, and J.T.M. De Hosson: Microstructural characterization of Co-based coating deposited by low power pulse laser cladding. J. Mater. Sci. 48, 2714 (2013).

    Article  CAS  Google Scholar 

  2. Y. Liu and H.M. Wang: Microstructure and wear property of laser-clad Co3Mo2Si/Coss wear resistant coatings. Surf. Coat. Technol. 205, 377 (2010).

    Article  CAS  Google Scholar 

  3. W.C. Lin and C. Chen: Characteristics of thin surface layers of cobalt-based alloys deposited by laser cladding. Surf. Coat. Technol. 200, 4557 (2006).

    Article  CAS  Google Scholar 

  4. H. Yan, A. Wang, K. Xu, W. Wang, and Z. Huang: Microstructure and interfacial evaluation of Co-based alloy coating on copper by pulsed Nd:YAG multilayer laser cladding. J. Alloys. Compd. 505, 645 (2010).

    Article  CAS  Google Scholar 

  5. A. Zielinski, H. Smolenska, W. Serbinski, W. Konczewicz, and A. Klimpel: Characterization of the Co-base layers obtained by laser cladding technique. J. Mater. Process. Technol. 164, 958 (2005).

    Article  Google Scholar 

  6. Y. Samih, B. Beausir, B. Bolle, and T. Grosdidier: In-depth quantitative analysis of the microstructures produced by surface mechanical attrition treatment (SMAT). Mater. Charact. 83, 129 (2013).

    Article  CAS  Google Scholar 

  7. O. Unal and R. Varol: Almen intensity effect on microstructure and mechanical properties of low carbon steel subjected to severe shot peening. Appl. Surf. Sci. 290, 40 (2014).

    Article  CAS  Google Scholar 

  8. W.L. Li, N.R. Tao, and K. Lu: Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scr. Mater. 59, 546 (2008).

    Article  CAS  Google Scholar 

  9. Y.S. Zhang, P.X. Zhang, H.Z. Niu, C. Chen, G. Wang, D.H. Xiao, X.H. Chen, Z.T. Yu, S.B. Yuan, and X.F. Bai: Surface nanocrystallization of Cu and Ta by sliding friction. Mater. Sci. Eng., A. 607, 351 (2014).

    Article  CAS  Google Scholar 

  10. Y.C. Chen, H. Fujii, T. Tsumura, Y. Kitagawa, K. Nakata, K. Ikeuchi, K. Matsubayashi, Y. Michishita, Y. Fujiya, and J. Katoh: Banded structure and its distribution in friction stir processing of 316L austenitic stainless steel. J. Nucl. Mater. 420, 497 (2012).

    Article  CAS  Google Scholar 

  11. H.S. Grewal, H.S. Arora, H. Singh, and A. Agrawal: Surface modification of hydroturbine steel using friction stir processing. Appl. Surf. Sci. 268, 547 (2013).

    Article  CAS  Google Scholar 

  12. J.D. Escobar, E. Velasquez, T.F.A. Santos, A.J. Ramirez, and D. Lopez: Improvement of cavitation erosion resistance of a duplex stainless steel through friction stir processing (FSP). Wear 297, 998 (2013).

    Article  CAS  Google Scholar 

  13. M.S. Khorrami, M. Kazeminezhad, and A.H. Kokabi: The effect of SiC nanoparticles on the friction stir processing of severely deformed aluminum. Mater. Sci. Eng., A. 602, 110 (2014).

    Article  Google Scholar 

  14. W. Yuan, S.K. Panigrahi, and R.S. Mishra: Achieving high strength and high ductility in friction stir-processed cast magnesium alloy. Metall. Mater. Trans. A 44A, 3675 (2013).

    Article  Google Scholar 

  15. S. Mukherjee and A.K. Ghosh: Friction stir processing of direct metal deposited copper-nickel 70/30. Mater. Sci. Eng., A 528, 3289 (2011).

    Article  Google Scholar 

  16. M. Hajian, A. Abdollah-zadeh, S.S. Rezaei-Nejad, H. Assadi, S.M.M. Hadavi, K. Chung, and M. Shokouhimehr: Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing. Appl. Surf. Sci. 308, 184 (2014).

    Article  CAS  Google Scholar 

  17. Y. Morisada, H. Fujii, T. Mizuno, G. Abe, T. Nagaoka, and M. Fukusumi: Fabrication of nanostructured tool steel layer by combination of laser cladding and friction stir processing. Surf. Coat. Technol. 205, 3397 (2011).

    Article  CAS  Google Scholar 

  18. Y. Morisada, H. Fujii, T. Mizuno, G. Abe, T. Nagaoka, and M. Fukusumi: Nanostructured tool steel fabricated by combination of laser melting and friction stir processing. Mater. Sci. Eng., A 505, 157 (2009).

    Article  Google Scholar 

  19. Y. Morisada, H. Fujii, T. Mizuno, G. Abe, T. Nagaoka, and M. Fukusumi: Modification of nitride layer on cold-work tool steel by laser melting and friction stir processing. Surf. Coat. Technol. 204, 386 (2009).

    Article  CAS  Google Scholar 

  20. R. Li, T. Yuan, and Z. Qiu: A model to describe the surface gradient-nanograin formation and property of friction stir processed laser Co-Cr-Ni-Mo alloy. Appl. Surf. Sci. 308, 176 (2014).

    Article  CAS  Google Scholar 

  21. R. Li, J. Li, Y. Liang, C. Ji, and T. Yuan: Viscoplastic friction and microstructural evolution behavior of laser-clad Co-Cr-Ni-Mo coating. Trans. Nonferrous Met. Soc. China 23, 681 (2013).

    Article  CAS  Google Scholar 

  22. R. Li, T. Yuan, Z. Qiu, K. Zhou, and J. Li: Nanostructured Co–Cr–Fe alloy surface layer fabricated by combination of laser clad and friction stir processing. Surf. Coat. Technol. 258, 415 (2014).

    Article  CAS  Google Scholar 

  23. G. Xu, M. Kutsuna, Z. Liu, and K. Yamada: Comparison between diode laser and TIG cladding of Co-based alloys on the SUS403 stainless steel. Surf. Coat. Technol. 201, 1138 (2006).

    Article  CAS  Google Scholar 

  24. K. Dehghani and A. Chabok: Dependence of Zener parameter on the nanograins formed during friction stir processing of interstitial free steels. Mater. Sci. Eng., A 528, 6652 (2011).

    Article  CAS  Google Scholar 

  25. A. Chabok and K. Dehghani: Formation of nanograin in IF steels by friction stir processing. Mater. Sci. Eng., A 528, 309 (2010).

    Article  Google Scholar 

  26. K. Yamanaka, M. Mori, and A. Chiba: Origin of significant grain refinement in Co-Cr-Mo alloys without severe plastic deformation. Metall. Mater. Trans. A 43A, 4875 (2012).

    Article  Google Scholar 

  27. K. Yamanaka, M. Mori, and A. Chiba: Dynamic recrystallization of a biomedical Co-Cr-W-based alloy under hot deformation. Mater. Sci. Eng., A 592, 173 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to acknowledge the financial support of National Natural Science Foundation of China (51101126, 51301028, 51301205, 51405288), Open found of State Key Laboratory of Material Processing and Die & Mold Technology (P2014-07), Changzhou Scientific and Technological Projects (CJ20130034) and Pecialized Research Fund for the Doctoral Program of Higher Education of China (20130162120001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruidi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Li, R., Yuan, T. et al. Producing nanostructured Co–Cr–W alloy surface layer by laser cladding and friction stir processing. Journal of Materials Research 30, 717–726 (2015). https://doi.org/10.1557/jmr.2015.28

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.28

Navigation