Skip to main content
Log in

Optical properties of defects in nitride semiconductors

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Group III nitrides are promising materials for light emitting diodes (LEDs). The occurrence of structural defects strongly affects the efficiency of these LEDs. We investigate the optical properties of basal plane stacking faults (BFSs), and the assignment of specific spectral features to distinct defect types by direct correlation of localized emission bands measured by cathodoluminescence in a scanning electron microscope with defects found in high resolution (scanning) transmission electron microscopy and electron beam induced current at identical sample spots. Thus, we are able to model the electronic structure of BSFs addressing I1, I2, and E type BSFs in GaN and AlGaN with low Al content. We find hints that BSFs in semipolar AlGaN layers cause local changes of the Al content, which strongly affects the usability of AlGaN as an electron blocking layer in nitride based LEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. P. Schlotter, R. Schmidt, and J. Schneider: Luminescence conversion of blue light emitting diode. Appl. Phys. A 64, 417 (1997).

    Article  CAS  Google Scholar 

  2. M. Raukas, J. Kelso, Y. Zheng, K. Bergenek, D. Eisert, A. Linkov, and F. Jermann: Ceramic Phosphors for Light Conversion in LEDs. ECS J. Solid State Sci. Technol. 2, R3168 (2013).

    Article  CAS  Google Scholar 

  3. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama: High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures. Jpn. J. Appl. Phys. 34, L797 (1995).

    Article  CAS  Google Scholar 

  4. M-H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E.F. Schubert, J. Piprek, and Y. Park: Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91, 183507 (2007).

    Article  CAS  Google Scholar 

  5. Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, and M.R. Krames: Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91, 141101 (2007).

    Article  CAS  Google Scholar 

  6. J. Piprek: Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi A 207, 2217 (2010).

    Article  CAS  Google Scholar 

  7. J. Iveland, L. Martinelli, J. Peretti, J.S. Speck, and C. Weisbuch: Direct Measurement of Auger Electrons Emitted from a Semiconductor Light-Emitting Diode under Electrical Injection: Identification of the Dominant Mechanism for Efficiency Droop. Phys. Rev. Lett. 110, 177406 (2013).

    Article  CAS  Google Scholar 

  8. J. Piprek and Z.M. Simon Li: Origin of InGaN light-emitting diode efficiency improvements using chirped AlGaN multi-quantum barriers. Appl. Phys. Lett. 102, 023510 (2013).

    Article  CAS  Google Scholar 

  9. M. Binder, A. Nirschl, R. Zeisel, T. Hager, H-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler: Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence. Appl. Phys. Lett. 103, 071108 (2013).

    Article  CAS  Google Scholar 

  10. F. Bertazzi, M. Goano, X. Zhou, M. Calciati, G. Ghione, M. Matsubara, and E. Bellotti: Looking for Auger signatures in III-nitride light emitters: A full-band Monte Carlo perspective. Appl. Phys. Lett. 106, 061112 (2015).

    Article  CAS  Google Scholar 

  11. P. Kozodoy, J.P. Ibbetson, H. Marchand, P.T. Fini, S. Keller, J.S. Speck, S.P. DenBaars, and U.K. Mishra: Electrical characterization of GaN p-n junctions with and without threading dislocations. Appl. Phys. Lett. 73, 975 (1998).

    Article  CAS  Google Scholar 

  12. J.W.P. Hsu, M.J. Manfra, D.V. Lang, S. Richter, S.N.G. Chu, A.M. Sergent, R.N. Kleiman, L.N. Pfeiffer, and R.J. Molnar: Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes. Appl. Phys. Lett. 78, 1685 (2001).

    Article  CAS  Google Scholar 

  13. J.W.P. Hsu, M.J. Manfra, S.N.G. Chu, C.H. Chen, L.N. Pfeiffer, and R.J. Molnar: Effect of growth stoichiometry on the electrical activity of screw dislocations in GaN films grown by molecular-beam epitaxy. Appl. Phys. Lett. 78, 3980 (2001).

    Article  CAS  Google Scholar 

  14. E.J. Miller, X.Z. Dang, and E.T. Yu: Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors. J. Appl. Phys. 88, 5951 (2000).

    Article  CAS  Google Scholar 

  15. L. McCarthy, I. Smorchkova, H. Xing, P. Fini, S. Keller, J. Speck, S.P. DenBaars, M.J.W. Rodwell, and U.K. Mishra: Effect of threading dislocations on AlGaN/GaN heterojunction bipolar transistors. Appl. Phys. Lett. 78, 2235 (2001).

    Article  CAS  Google Scholar 

  16. S. Ganguly, J. Verma, Z. Hu, H.G. Xing, and D. Jena: Performance enhancement of InAlN/GaN HEMTs by KOH surface treatment. Appl. Phys. Express 7, 034102 (2014).

    Article  CAS  Google Scholar 

  17. S. Hafiz, F. Zhang, M. Monavarian, S. Okur, V. Avrutin, H. Morkoç, and U. Özgür: Estimation of carrier leakage in InGaN light emitting diodes from photocurrent measurements. In Proceedings of the International Society of Optical Engineering, Vol. 9003; SPIE, Bellingham, WA, 2014; p. 90031R.

    Google Scholar 

  18. T. Yokoyama, Y. Kamimura, K. Edagawa, and I. Yonenaga: Local current conduction due to edge dislocations in deformed GaN studied by scanning spreading resistance microscopy. Eur. Phys. J.: Appl. Phys. 61, 10102 (2013).

    Google Scholar 

  19. C.M. Drum: Intersecting faults on basal and prismatic planes in aluminium nitride. Philos. Mag. 11, 313 (1965).

    Article  CAS  Google Scholar 

  20. D.N. Zakharov, Z. Liliental-Weber, B. Wagner, Z.J. Reitmeier, E.A. Preble, and R.F. Davis: Structural TEM study of nonpolar a-plane gallium nitride grown on \((11\bar 20)\) 4 H-SiC by organometallic vapor phase epitaxy. Phys. Rev. B 71, 235334 (2005).

    Article  CAS  Google Scholar 

  21. G. Ramírez-Flores, H. Navarro-Contreras, A. Lastras-Martínez, R.C. Powell, and J.E. Greene: Temperature-dependent optical band gap of the metastable zinc-blende structure -GaN. Phys. Rev. B 50, 8433 (1994).

    Article  Google Scholar 

  22. B. Monemar: Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys. Rev. B 10, 676 (1974).

    Article  CAS  Google Scholar 

  23. Y.T. Rebane, Y.G. Shreter, and M. Albrecht: Stacking Faults as Quantum Wells for Excitons in Wurtzite GaN. Phys. Status Solidi A 164, 141 (1997).

    Article  CAS  Google Scholar 

  24. M. Albrecht, S. Christiansen, G. Salviati, C. Zanotti-Fregonara, Y.T. Rebane, Y.G. Shreter, M. Mayer, A. Pelzmann, M. Kamp, K.J. Ebeling, M.D. Bremser, R.F. Davis, and H.P. Strunk: Luminescence Related to Stacking Faults in Heterepitaxially Grown Wurtzite GaN. MRS Online Proc. Libr. 468, 293 (1997).

    Article  CAS  Google Scholar 

  25. Z. Bandić, T. McGill, and Z. Ikonić: Electronic structure of GaN stacking faults. Phys. Rev. B 56, 3564 (1997).

    Article  Google Scholar 

  26. I. Tischer, M. Feneberg, M. Schirra, H. Yacoub, R. Sauer, K. Thonke, T. Wunderer, F. Scholz, L. Dieterle, E. Müller, and D. Gerthsen: I 2 basal plane stacking fault in GaN: Origin of the 3.32 eV luminescence band. Phys. Rev. B 83, 035314 (2011).

    Article  CAS  Google Scholar 

  27. Y.J. Sun, O. Brandt, U. Jahn, T.Y. Liu, A. Trampert, S. Cronenberg, S. Dhar, and K.H. Ploog: Impact of nucleation conditions on the structural and optical properties of M-plane \(GaN(1\bar 100)\) grown on \(\gamma - LiAl{O_2}\). J. Appl. Phys. 92, 5714 (2002).

    Article  CAS  Google Scholar 

  28. B. Skromme, L. Chen, M. Mikhov, H. Yamane, M. Aoki, and F. DiSalvo: Properties of the 3.4 eV Luminescence Band in GaN and its Relation to Stacking Faults. Mater. Sci. Forum 457, 1613 (2004).

    Article  Google Scholar 

  29. R. Liu, A. Bell, F.A. Ponce, C.Q. Chen, J.W. Yang, and M.A. Khan: Luminescence from stacking faults in gallium nitride. Appl. Phys. Lett. 86, 021908 (2005).

    Article  CAS  Google Scholar 

  30. J. Lähnemann, O. Brandt, U. Jahn, C. Pfüller, C. Roder, P. Dogan, F. Grosse, A. Belabbes, F. Bechstedt, A. Trampert, and L. Geelhaar: Direct experimental determination of the spontaneous polarization of GaN. Phys. Rev. B 86, 081302 (2012).

    Article  CAS  Google Scholar 

  31. J. Lähnemann, U. Jahn, O. Brandt, T. Flissikowski, P. Dogan, and H.T. Grahn: Luminescence associated with stacking faults in GaN. J. Phys. D: Appl. Phys. 47, 423001 (2014).

    Article  CAS  Google Scholar 

  32. G. Jacopin, L. Rigutti, L. Largeau, F. Fortuna, F. Furtmayr, F.H. Julien, M. Eickhoff, and M. Tchernycheva: Optical properties of wurtzite/zinc-blende heterostructures in GaN nanowires. J. Appl. Phys. 110, 064313 (2011).

    Article  CAS  Google Scholar 

  33. J. Piprek and S. Nakamura: Physics of high-power InGaN/GaN lasers. IEE Proc.: Optoelectron. 4, 145 (2002).

    Google Scholar 

  34. J.F. Van der Maelen Uría, S. García-Granda, and A. Menéndez-Velázquez: Solving one-dimensional Schrödinger-like equations using a numerical matrix method. Am. J. Phys. 64, 327 (1996).

    Article  Google Scholar 

  35. F. Scholz, S. Schwaiger, J. Däubler, I. Tischer, K. Thonke, S. Neugebauer, S. Metzner, F. Bertram, J. Christen, H. Lengner, J. Thalmair, and J. Zweck: Semipolar GaInN quantum well structures on large area substrates. Phys. Status Solidi B 249, 464 (2012).

    Article  CAS  Google Scholar 

  36. V. Darakchieva, B. Monemar, and A. Usui: On the lattice parameters of GaN. Appl. Phys. Lett. 91, 031911 (2007).

    Article  CAS  Google Scholar 

  37. W. Paszkowicz, S. Podsiadło, and R. Minikayev: Rietveld-refinement study of aluminium and gallium nitrides. J. Alloys Compd. 382, 100 (2004). Proceedings of the European Materials Research Society Fall Meeting, Symposium B.

    Article  CAS  Google Scholar 

  38. I. Vurgaftman and J.R. Meyer: Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675 (2003).

    Article  CAS  Google Scholar 

  39. F. Bernardini, V. Fiorentini, and D. Vanderbilt: Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56, R10024 (1997).

    Article  CAS  Google Scholar 

  40. M. Feneberg, K. Lange, C. Lidig, M. Wieneke, H. Witte, J. Bläsing, A. Dadgar, A. Krost, and R. Goldhahn: Anisotropic absorption and emission of bulk \((1\bar 100)\) AlN. Appl. Phys. Lett. 103, 232104 (2013).

    Article  CAS  Google Scholar 

  41. L.C. de Carvalho, A. Schleife, and F. Bechstedt: Influence of exchange and correlation on structural and electronic properties of AlN, GaN, and InN. Phys. Rev. B 84, 195105 (2011).

    Article  CAS  Google Scholar 

  42. J.S. Im, A. Moritz, F. Steuber, V. Härle, F. Scholz, and A. Hangleiter: Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN. Appl. Phys. Lett. 70, 631 (1997).

    Article  CAS  Google Scholar 

  43. T. Azuhata, T. Sota, K. Suzuki, and S. Nakamura: Polarized Raman spectra in GaN. J. Phys.: Condens. Matter 7, L129 (1995).

    CAS  Google Scholar 

  44. M. Feneberg, M.F. Romero, M. Röppischer, C. Cobet, N. Esser, B. Neuschl, K. Thonke, M. Bickermann, and R. Goldhahn: Anisotropic absorption and emission of bulk \((1\bar 100)\) AlN. Phys. Rev. B 87, 235209 (2013b).

    Article  CAS  Google Scholar 

  45. B. Neuschl, J. Helbing, M. Knab, H. Lauer, M. Madel, K. Thonke, T. Meisch, K. Forghani, F. Scholz, and M. Feneberg: Composition dependent valence band order in c-oriented wurtzite AlGaN layers. J. Appl. Phys. 116, 113506 (2014).

    Article  CAS  Google Scholar 

  46. M. Feneberg, M. Röppischer, C. Cobet, N. Esser, J. Schörmann, T. Schupp, D.J. As, F. Hörich, J. Bläsing, A. Krost, and R. Goldhahn: Optical properties of cubic GaN from 1 to 20 eV. Phys. Rev. B 85, 155207 (2012).

    Article  CAS  Google Scholar 

  47. M. Röppischer, R. Goldhahn, G. Rossbach, P. Schley, C. Cobet, N. Esser, T. Schupp, K. Lischka, and D.J. As: Dielectric function of zinc-blende AlN from 1 to 20 eV: Band gap and van Hove singularities. J. Appl. Phys. 106, 076104 (2009).

    Article  CAS  Google Scholar 

  48. V. Bougrov, M.E. Levinshtein, S.L. Rumyantsev, and A. Zubrilov: Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe; M.E. Levinshtein, S.L. Rumyantsev, and M. Shur eds.; John Wiley & Sons, New York, 2001.

    Google Scholar 

  49. T. Suzuki, H. Yaguchi, H. Okumura, Y. Ishida, and S. Yoshida: Optical Constants of Cubic GaN, AlN, and AlGaN Alloys. Jpn. J. Appl. Phys. 39, L497 (2000).

    Article  CAS  Google Scholar 

  50. T. Wunderer, J. Hertkorn, F. Lipski, P. Brückner, M. Feneberg, M. Schirra, K. Thonke, I. Knoke, E. Meissner, A. Chuvilin, U. Kaiser, and F. Scholz: Optimization of semipolar GaInN/GaN blue/green light emitting diode structures on {1-101} GaN side facets. Proc. SPIE 6894, 68940V (2008).

    Article  CAS  Google Scholar 

  51. M. Knab, M. Hocker, T. Felser, I. Tischer, J. Wang, F. Scholz, and K. Thonke: EBIC investigations on polar and semipolar InGaN LED structures. Phys. Status Solidi B (2015). doi: https://doi.org/10.1002/pssb.201552284.

  52. I. Tischer, M. Feneberg, M. Schirra, H. Yacoub, R. Sauer, K. Thonke, T. Wunderer, F. Scholz, L. Dieterle, E. Müller, and D. Gerthsen: Stacking fault-related luminescence features in semi-polar GaN. Phys. Status Solidi B 248, 611 (2011).

    Article  CAS  Google Scholar 

  53. I. Tischer, M. Frey, M. Hocker, L. Jerg, M. Madel, B. Neuschl, K. Thonke, R. Leute, F. Scholz, H. Groiss, E. Müller, and D. Gerthsen: Basal plane stacking faults in semipolar AlGaN: Hints to Al redistribution. Phys. Status Solidi B 251, 2321 (2014).

    Article  CAS  Google Scholar 

  54. T. Narita, Y. Honda, M. Yamaguchi, and N. Sawaki: The surface diffusion of Ga species on an AlGaN facet structure in low pressure MOVPE. Phys. Status Solidi C 4, 2506 (2007).

    Article  CAS  Google Scholar 

  55. L. Vegard: Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 5, 17 (1921).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks A. Eifert, G. Neusser, and C. Kranz from FIB Center at University of Ulm for their supporting SEM-EDX/FIB investigations. Parts of this work have been financially supported by the Deutsche Forschungsgemeinschaft within the transregional research group “PolarCoN”. Further financial support by the German Federal Ministry of Education and Research (BMBF) within the framework of the “Deep UV-LED” project is gratefully acknowledged. Parts of this work received funding from the European Union’s Seventh Framework Program within the research project “ALIGHT”. H.G. acknowledges funding by the Austrian Science Fund (FWF): J3317-N27.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Tischer.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tischer, I., Hocker, M., Neuschl, B. et al. Optical properties of defects in nitride semiconductors. Journal of Materials Research 30, 2977–2990 (2015). https://doi.org/10.1557/jmr.2015.273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.273

Navigation