Skip to main content
Log in

Exchange bias and training effect in NiCr2O4/Cr2O3 composite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

NiCr2O4/Cr2O3 system with ferrimagnetic spinel and antiferromagnetic transition metal oxide has been firstly synthesized by a chemical co-precipitation method. Magnetic measurements on this system also exhibit the exchange bias (EB) and training effect for the first time. EB effect with evident shift of coercive field and remnant magnetization can be detected at low temperature after field cooling from 350 K. The EB field can reach about 2037 Oe and the magnetization shift is as large as 0.129 emu/g at 10 K. Furthermore, EB effect recedes gradually with temperature increasing and disappears at about 70 K. In this process, EB field decreases with a linear dependence on the magnetization shift. This EB behavior is discussed according to the disordered regions existed at the interface between NiCr2O4 and Cr2O3. In addition, we have analyzed the training effect, which indicates the coexistence of two distinct forms of training mechanism during cycle procedure. One is concerned with an athermal impact resulting in the abrupt single cycle training and the other is gradual reduction of EB field during the subsequent cycles due to the conventional thermal activation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. A.E. Berkowitz and K. Takano: Exchange anisotropy—A review. J. Magn. Magn. Mater. 200, 552 (1999).

    Article  CAS  Google Scholar 

  2. S. Das, M. Patra, S. Majumdar, and S. Giri: Exchange bias effect at the irregular interfaces between Co and CoO nanostructures. J. Alloys Compd. 488, 27 (2009).

    Article  CAS  Google Scholar 

  3. W.H. Meiklejohn and C.P. Bean: New magnetic anisotropy. Phys. Rev. 102, 1413 (1956).

    Article  Google Scholar 

  4. B. Dieny, V.S. Speriosu, S.S.P. Parkin, B.A. Gurney, D.R. Wilhoit, and D. Mauri: Giant magnetoresistance in soft ferromagnetic multilayers. Phys. Rev. B 43, 1297 (1991).

    Article  CAS  Google Scholar 

  5. J.C.S. Kools: Exchange-biased spin-valves for magnetic storage. IEEE Trans. Magn. 32, 3165 (1996).

    Article  CAS  Google Scholar 

  6. R.K. Zheng, G.H. Wen, K.K. Fung, and X.X. Zhang: Training effect of exchange bias in γ-Fe2O3 coated Fe nanoparticles. Phys. Rev. B 69, 214431 (2004).

    Article  Google Scholar 

  7. S. Guo, W. Liu, H. Meng, X.H. Liu, W.J. Gong, Z. Han, and Z.D. Zhang: Exchange bias and its training effect in Ni/NiO nanocomposites. J. Alloys Compd. 497, 10 (2010).

    Article  CAS  Google Scholar 

  8. J. Nogués and I.K. Schuller: Exchange bias. J. Magn. Magn. Mater. 192, 203 (1999).

    Article  Google Scholar 

  9. V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, and J. Nogués: Beating the superparamagnetic limit with exchange bias. Nature 423, 850 (2003).

    Article  CAS  Google Scholar 

  10. S.R. Mishra, I. Dubenko, J. Griffis, N. Ali, and K. Marasinghe: Exchange bias effect in ball milled Co–Cr2O3 FM–AFM nanocomposites. J. Alloys Compd. 485, 667 (2009).

    Article  CAS  Google Scholar 

  11. J.B. Yi, J. Ding, Z.L. Zhao, and B.H. Liu: High coercivity and exchange coupling of Ni/NiO nanocomposite film. J. Appl. Phys. 97, 10K306 (2005).

    Article  Google Scholar 

  12. M. Ptak, M. Maczka, A. Gagor, A. Pikul, L. Macalik, and J. Hanuza: Temperature-dependent XRD, IR, magnetic, SEM and TEM studies of Jahn–Teller distorted NiCr2O4 powders. J. Solid State Chem. 201, 270 (2013).

    Article  CAS  Google Scholar 

  13. M.R. Suchomel, D.P. Shoemaker, L. Ribaud, M.C. Kemei, and R. Seshadri: Spin-induced symmetry breaking in orbitally ordered NiCr2O4 and CuCr2O4. Phys. Rev. B 86, 054406 (2012).

    Article  Google Scholar 

  14. T.R. Mcguire, E.J. Scott, and F.H. Grannis: Antiferromagnetism in a Cr2O3 crystal. Phys. Rev. 102, 1000 (1956).

    Article  CAS  Google Scholar 

  15. Z.M. Tian, S.L. Yuan, S.Y. Yin, L. Liu, J.H. He, H.N. Duan, P. Li, and C.H. Wang: Exchange bias effect in a granular system of NiFe2O4 nanoparticles embedded in an antiferromagnetic NiO matrix. Appl. Phys. Lett. 93, 222505 (2008).

    Article  Google Scholar 

  16. M. Tadic, S.M. Savic, Z. Jaglicic, K. Vojisavljevic, A. Radojkovic, S. Prsic, and D. Nikolic: Magnetic properties of NiMn2O4−δ (nickel manganite): Multiple magnetic phase transitions and exchange bias effect. J. Alloys Compd. 588, 465 (2014).

    Article  CAS  Google Scholar 

  17. M. Gruyters and D. Schmitz: Microscopic nature of ferro- and antiferromagnetic interface coupling of uncompensated magnetic moments in exchange bias systems. Phys. Rev. Lett. 100, 077205 (2008).

    Article  CAS  Google Scholar 

  18. X.P. Qiu, D.Z. Yang, S.M. Zhou, R. Chantrell, K. O’Grady, U. Nowak, J. Du, X.J. Bai, and L. Sun: Rotation of the pinning direction in the exchange bias training effect in polycrystalline NiFe/FeMn bilayers. Phys. Rev. Lett. 101, 147207 (2008).

    Article  CAS  Google Scholar 

  19. J. Barman, T. Bora, and S. Ravi: Study of exchange bias and training effect in NiCr2O4. J. Magn. Magn. Mater. 385, 93 (2015).

    Article  CAS  Google Scholar 

  20. H. Singh, T. Chakraborty, K. Srikanth, R. Chandra, C. Mitra, and U. Kumar: Study of exchange bias in NiCr2O4 nanoparticles. Phys. B 448, 77 (2014).

    Article  CAS  Google Scholar 

  21. A. Hochstrat, Ch. Binek, and W. Kleemann: Training of the exchange-bias effect in NiO–Fe heterostructures. Phys. Rev. B 66, 092409 (2002).

    Article  Google Scholar 

  22. A. Hoffmann: Symmetry driven irreversibilities at ferromagnetic–antiferromagnetic interfaces. Phys. Rev. Lett. 93, 097203 (2004).

    Article  CAS  Google Scholar 

  23. D. Paccard, C. Schlenker, O. Massenet, R. Montmory, and A. Yelon: A new property of ferromagnetic–antiferromagnetic coupling. Phys. Status Solidi 16, 301 (1966).

    Article  CAS  Google Scholar 

  24. M.K. Chan, J.S. Parker, P.A. Crowell, and C. Leighton: Identification and separation of two distinct contributions to the training effect in polycrystalline Co/FeMn bilayers. Phys. Rev. B 77, 014420 (2008).

    Article  Google Scholar 

  25. T. Dias, E. Menéndez, H. Liu, C.V. Haesendonck, A. Vantomme, K. Temst, J.E. Schmidt, R. Giulian, and J. Geshev: Rotatable anisotropy driven training effects in exchange biased Co/CoO films. J. Appl. Phys. 115, 243903 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11174092 and 11474111). We would like to thank the staff of Analysis Center of HUST for their assistance in various measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Songliu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liguang, W., Changming, Z., Zhaoming, T. et al. Exchange bias and training effect in NiCr2O4/Cr2O3 composite. Journal of Materials Research 30, 3252–3258 (2015). https://doi.org/10.1557/jmr.2015.272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.272

Navigation