Skip to main content

Advertisement

Log in

Nickel foam–graphene/MnO2/PANI nanocomposite based electrode material for efficient supercapacitors

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A ternary Nickel foam (NF)–graphene/MnO2/polyaniline (PANI) nanocomposite has been synthesized using green chemistry approach (in situ polymerization). All reactants were dispersed homogeneously in precursor solution in the form of ions and molecules. PANI and MnO2 molecules on the NF–graphene contact each other and are arranged alternately in the composite. Alternative arrangement of PANI and MnO2 nanoparticles separates them and prevents the aggregation of PANI and MnO2 to decrease the particle size of the composite on the surface of NF–graphene. The intermolecule contact improves the conductivity of the composite. The composite showed excellent specific capacitance of 1081 F/g at a scan rate of 1 mV/s and specific capacitance of 815 F/g at a current density of 3 A/g, having excellent cycling stability. Current study provides an alternative pathway to improve the rate capability and cycling stability of nanostructured electrodes, by offering a great promise for their applications in supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. Z. Yu, L. Tetard, L. Zhai, and J. Thomas: Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions Energy Environ. Sci. 8 (3), 702 (2015).

    Article  CAS  Google Scholar 

  2. S. Hellstern, P. Kitzler, R. Neuhaus, and I. Kolaric: Electrochemical capacitors for electromobility: A review. In 15. Internationales Stuttgarter Symposium; M. Bargende, H-C. Reuss and J. Wiedemann, eds.; Springer Fachmedien: Wiesbaden, 2015; p. 121.

    Chapter  Google Scholar 

  3. Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, and F. Wei: Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density Adv. Funct. Mater. 21 (12), 2366 (2011).

    Article  CAS  Google Scholar 

  4. L. Bao, J. Zang, and X. Li: Flexible Zn2SnO4/MnO2 core/shell nanocable−carbon microfiber hybrid composites for high-performance supercapacitor electrodes Nano Lett. 11 (3), 1215 (2011).

    Article  CAS  Google Scholar 

  5. J. Chen, Z. Bo, and G. Lu: Vertically-oriented graphene for supercapacitors, In Vertically-oriented Graphene; Springer International Publishing: Weinheim, 2015; p. 79.

    Google Scholar 

  6. S-M. Chen, R. Ramachandran, V. Mani, and R. Saraswathi: Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: A review Int. J. Electrochem. Sci. 9, 4072 (2014).

    Google Scholar 

  7. L.L. Zhang and X. Zhao: Carbon-based materials as supercapacitor electrodes Chem. Soc. Rev. 38 (9), 2520 (2009).

    Article  CAS  Google Scholar 

  8. D. Villers, D. Jobin, C. Soucy, D. Cossement, R. Chahine, L. Breau, and D. Bélanger: The influence of the range of electroactivity and capacitance of conducting polymers on the performance of carbon conducting polymer hybrid supercapacitor J. Electrochem. Soc. 150 (6), A747 (2003).

    Article  CAS  Google Scholar 

  9. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov: Two-dimensional gas of massless Dirac fermions in graphene Nature. 438 (7065), 197 (2005).

    Article  CAS  Google Scholar 

  10. M. Mao, J. Hu, and H. Liu: Graphene-based materials for flexible electrochemical energy storage Int. J. Energy Res. 39 (6), 727 (2015).

    Article  CAS  Google Scholar 

  11. M. Seong and D.S. Kim: Effects of facile amine-functionalization on the physical properties of epoxy/graphene nanoplatelets nanocomposites J. Appl. Polym. Sci. 132 (28), 42269 (2015).

    Article  CAS  Google Scholar 

  12. M. Asif, Y. Tan, L. Pan, J. Li, M. Rashad, and M. Usman: Thickness controlled water vapors assisted growth of multilayer graphene by ambient pressure chemical vapor deposition J. Phys. Chem. C. 119 (6), 3079 (2015).

    Article  CAS  Google Scholar 

  13. M. Rashad, F. Pan, H. Hu, M. Asif, S. Hussain, and J. She: Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets Mater. Sci. Eng., A 630, 36 (2015).

    Article  CAS  Google Scholar 

  14. M. Rashad, F. Pan, M. Asif, and A. Tang: Powder metallurgy of Mg–1%Al–1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs) J. Ind. Eng. Chem. 20 (6), 4250 (2014).

    Article  CAS  Google Scholar 

  15. C. Guo, H. Li, X. Zhang, H. Huo, and C. Xu: 3D porous CNT/MnO2 composite electrode for high-performance enzymeless glucose detection and supercapacitor application Sens. Actuators, B 206, 407 (2015).

    Article  CAS  Google Scholar 

  16. M. Huang, F. Li, X.L. Zhao, D. Luo, X.Q. You, Y.X. Zhang, and G. Li: Hierarchical ZnO@MnO2 core-shell pillar arrays on Ni foam for binder-free supercapacitor electrodes Electrochim. Acta 152, 172 (2015).

    Article  CAS  Google Scholar 

  17. M. Huang, R. Mi, H. Liu, F. Li, X.L. Zhao, W. Zhang, S.X. He, and Y.X. Zhang: Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes J. Power Sources 269 (0), 760 (2014).

    Article  CAS  Google Scholar 

  18. Y-Q. Zhao, D-D. Zhao, P-Y. Tang, Y-M. Wang, C-L. Xu, and H-L. Li: MnO2/graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition strategy Mater. Lett. 76, 127 (2012).

    Article  CAS  Google Scholar 

  19. J. Hao, Y. Zhong, Y. Liao, D. Shu, Z. Kang, X. Zou, C. He, and S. Guo: Face-to-face self-assembly graphene/MnO2 nanocomposites for supercapacitor applications using electrochemically exfoliated graphene Electrochim. Acta 167, 412 (2015).

    Article  CAS  Google Scholar 

  20. Y. Liu, D. He, H. Wu, J. Duan, and Y. Zhang: Hydrothermal self-assembly of manganese dioxide/manganese carbonate/reduced graphene oxide aerogel for asymmetric supercapacitors Electrochim. Acta 164, 154 (2015).

    Article  CAS  Google Scholar 

  21. Z. Zeng, H. Zhou, X. Long, E. Guo, and X. Wang: Electrodeposition of hierarchical manganese oxide on metal nanoparticles decorated nanoporous gold with enhanced supercapacitor performance J. Alloys Compd. 632, 376 (2015).

    Article  CAS  Google Scholar 

  22. H. Gao, F. Xiao, C.B. Ching, and H. Duan: High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2ACS Appl. Mater. Interfaces 4 (5), 2801 (2012).

    Article  CAS  Google Scholar 

  23. Y. Chen, Y. Zhang, D. Geng, R. Li, H. Hong, J. Chen, and X. Sun: One-pot synthesis of MnO2/graphene/carbon nanotube hybrid by chemical method Carbon 49 (13), 4434 (2011).

    Article  CAS  Google Scholar 

  24. A. Bello, O.O. Fashedemi, M. Fabiane, J.N. Lekitima, K.I. Ozoemena, and N. Manyala: Microwave assisted synthesis of MnO2 on nickel foam-graphene for electrochemical capacitor Electrochim. Acta 114, 48 (2013).

    Article  CAS  Google Scholar 

  25. X. Dong, X. Wang, J. Wang, H. Song, X. Li, L. Wang, M.B. Chan-Park, C.M. Li, and P. Chen: Synthesis of a MnO2–graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode Carbon 50 (13), 4865 (2012).

    Article  CAS  Google Scholar 

  26. J. Zhang, D. Shu, T. Zhang, H. Chen, H. Zhao, Y. Wang, Z. Sun, S. Tang, X. Fang, and X. Cao: Capacitive properties of PANI/MnO2 synthesized via simultaneous-oxidation route J. Alloys Compd. 532, 1 (2012).

    Article  CAS  Google Scholar 

  27. Y. Li, D. Cao, Y. Wang, S. Yang, D. Zhang, K. Ye, K. Cheng, J. Yin, G. Wang, and Y. Xu: Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors J. Power Sources 279, 138 (2015).

    Article  CAS  Google Scholar 

  28. A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K. Ozoemena, and N. Manyala: Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications J. Mater. Sci. 48 (19), 6707 (2013).

    Article  CAS  Google Scholar 

  29. S.J. Chae, F. Güneş, K.K. Kim, E.S. Kim, G.H. Han, S.M. Kim, H.J. Shin, S.M. Yoon, J.Y. Choi, and M.H. Park: Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation Adv. Mater. 21 (22), 2328 (2009).

    Article  CAS  Google Scholar 

  30. F. Teng, S. Santhanagopalan, Y. Wang, and D.D. Meng: In-situ hydrothermal synthesis of three-dimensional MnO2–CNT nanocomposites and their electrochemical properties J. Alloys Compd. 499 (2), 259 (2010).

    Article  CAS  Google Scholar 

  31. A.C. Ferrari: Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects Solid State Commun. 143 (1), 47 (2007).

    Article  CAS  Google Scholar 

  32. T. Gao, H. Fjellvåg, and P. Norby: A comparison study on Raman scattering properties of α-and β-MnO2Anal. Chim. Acta 648 (2), 235 (2009).

    Article  CAS  Google Scholar 

  33. H. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang: A nanostructured graphene/polyaniline hybrid material for supercapacitors Nanoscale 2 (10), 2164 (2010).

    Article  CAS  Google Scholar 

  34. D. Shu, J. Zhang, C. He, Y. Meng, H. Chen, Y. Zhang, and M. Zheng: Improved electrochemical redox performance of 2,5-dimercapto-1,3,4-thiadiazole by poly(3-methoxythiophene) J. Appl. Electrochem. 36 (12), 1427 (2006).

    Article  CAS  Google Scholar 

  35. Z-S. Wu, W. Ren, D-W. Wang, F. Li, B. Liu, and H-M. Cheng: High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors ACS Nano 4 (10), 5835 (2010).

    Article  CAS  Google Scholar 

  36. M. Winter and R.J. Brodd: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104 (10), 4245 (2004).

    Article  CAS  Google Scholar 

  37. R.K. Sharma, A.C. Rastogi, and S.B. Desu: Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor Electrochim. Acta 53 (26), 7690 (2008).

    Article  CAS  Google Scholar 

  38. S.C. Ray, A. Saha, S.K. Basiruddin, S.S. Roy, and N.R. Jana: Polyacrylate-coated graphene-oxide and graphene solution via chemical route for various biological application Diamond Relat. Mater. 20 (3), 449 (2011).

    Article  CAS  Google Scholar 

  39. L-J. Sun, X-X. Liu, K.K-T. Lau, L. Chen, and W-M. Gu: Electrodeposited hybrid films of polyaniline and manganese oxide in nanofibrous structures for electrochemical supercapacitor Electrochim. Acta 53 (7), 3036 (2008).

    Article  CAS  Google Scholar 

  40. P. Xiong, C. Hu, Y. Fan, W. Zhang, J. Zhu, and X. Wang: Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance J. Power Sources 266, 384 (2014).

    Article  CAS  Google Scholar 

  41. J. Zhang, Y. Yu, and D. Huang: Good electrical and mechanical properties induced by the multilayer graphene oxide sheets incorporated to amorphous carbon films Solid State Sci. 12 (7), 1183 (2010).

    Article  CAS  Google Scholar 

  42. A. Morozan, P. Jegou, B. Jousselme, and S. Palacin: Electrochemical performance of annealed cobalt-benzotriazole/CNTs catalysts towards the oxygen reduction reaction Phys. Chem. Chem. Phys. 13 (48), 21600 (2011).

    Article  CAS  Google Scholar 

  43. A.P. Monkman, G.C. Stevens, and D. Bloor: X-ray photoelectron spectroscopic investigations of the chain structure and doping mechanisms in polyaniline J. Phys. D: Appl. Phys. 24, 12 (1991).

    Article  Google Scholar 

  44. M. Angelopoulos, G.E. Asturias, S.P. Ermer, A. Ray, E.M. Scherr, A.G. Macdiarmid, M. Akhtar, Z. Kiss, and A.J. Epstein: Polyaniline: Solutions, films and oxidation state Mol. Cryst. Liq. Cryst. Incorporating Nonlinear Opt. 160 (1), 151 (1988).

    Article  Google Scholar 

  45. A.G. MacDiarmid, L.S. Yang, W.S. Huang, and B.D. Humphrey: Polyaniline: Electrochemistry and application to rechargeable batteries Synth. Met. 18 (1–3), 393 (1987).

    Article  CAS  Google Scholar 

  46. P.C. Rodrigues, M. Muraro, C.M. Garcia, G.P. Souza, M. Abbate, W.H. Schreiner, and M.A.B. Gomes: Polyaniline/lignin blends: Thermal analysis and XPS Eur. Polym. J. 37 (11), 2217 (2001).

    Article  CAS  Google Scholar 

  47. W.S. Hummers and R.E. Offeman: Preparation of Graphitic oxide J. Am. Chem. Soc. 80 (6), 1339 (1958).

    Article  CAS  Google Scholar 

  48. J-Y. Wang, C-M. Yu, S-C. Hwang, K-C. Ho, and L-C. Chen: Influence of coloring voltage on the optical performance and cycling stability of a polyaniline–indium hexacyanoferrate electrochromic system Sol. Energy Mater. Sol. Cells 92 (2), 112 (2008).

    Article  CAS  Google Scholar 

  49. J.H. Jang, K. Machida, Y. Kim, and K. Naoi: Electrophoretic deposition (EPD) of hydrous ruthenium oxides with PTFE and their supercapacitor performances Electrochim. Acta 52 (4), 1733 (2006).

    Article  CAS  Google Scholar 

  50. Z. Zhou, N. Cai, and Y. Zhou: Capacitive of characteristics of manganese oxides and polyaniline composite thin film deposited on porous carbon Mater. Chem. Phys. 94 (2), 371 (2005).

    Article  CAS  Google Scholar 

  51. C. Yuan, L. Su, B. Gao, and X. Zhang: Enhanced electrochemical stability and charge storage of MnO2/carbon nanotubes composite modified by polyaniline coating layer in acidic electrolytes Electrochim. Acta 53 (24), 7039 (2008).

    Article  CAS  Google Scholar 

  52. L. Chen, L-J. Sun, F. Luan, Y. Liang, Y. Li, and X-X. Liu: Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles J. Power Sources 195 (11), 3742 (2010).

    Article  CAS  Google Scholar 

  53. F-J. Liu, T-F. Hsu, and C-H. Yang: Construction of composite electrodes comprising manganese dioxide nanoparticles distributed in polyaniline–poly (4-styrene sulfonic acid-co-maleic acid) for electrochemical supercapacitor J. Power Sources 191 (2), 678 (2009).

    Article  CAS  Google Scholar 

  54. L.Y.J.X. Zhang, S.C. Zhang, and W.S. Yang: Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite aselectrode material for electrochemical capacitor J. Power Sources 173 (2), 1017 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Nos. 11274055, 61137005) and the Program for Liaoning Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lujun Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, M., Pan, L., Asif, M. et al. Nickel foam–graphene/MnO2/PANI nanocomposite based electrode material for efficient supercapacitors. Journal of Materials Research 30, 3192–3200 (2015). https://doi.org/10.1557/jmr.2015.271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.271

Navigation