Skip to main content
Log in

Investigation of flowing liquid zinc erosion and corrosion properties of the Fe–B alloy at various times

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The erosion–corrosion properties and interface microstructure of a Fe–B alloy that contains 3.5 wt% B in flowing liquid zinc have been investigated by electron backscattered diffraction, x-ray diffraction, and scanning electron microscopy to clarify the flowing effect of liquid zinc on erosion performance using a rotating-disk technique. The Fe–B alloy erodes at a low and steady rate in flowing liquid zinc. Flowing liquid zinc can accelerate the iron and zinc mass transfer to form Fe–Zn compounds and promote the removal of loose FeZn13. Much residual corrosion-resistant Fe2B and some erosion products coexist at the erosion interface because of the chemical and micromechanical effects that are created by flowing liquid zinc. The failure of the Fe2B corrosion-resistant skeleton in flowing liquid zinc occurs because of the loss of supporting matrix and also the formation and spread of microcracks during erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. J.H. Park, G.H. Park, D.J. Paik, Y. Huh, and M.H. Hong: Influence of aluminum on the formation behavior of Zn-Al-Fe intermetallic particles in a zinc bath. Metall. Mater. Trans. A 43A, 195 (2012).

    Google Scholar 

  2. A.R. Marder: The metallurgy of zinc-coated steel. Prog. Mater. Sci. 45, 191 (2000).

    CAS  Google Scholar 

  3. J. Xu, M.A. Bright, X.B. Liu, and E. Barbero: Liquid metal corrosion of 316L stainless steel, 410 stainless steel, and 1015 carbon steel in a molten zinc bath. Metall. Mater. Trans. A 38, 2727 (2007).

    Google Scholar 

  4. M.S. Brunnock, R.D. Jones, G.A. Jenkins, and D.T. Llewellyn: Interactions between liquid zinc and bath hardware materials in continuous galvanizing lines. Ironmaking Steelmaking 23, 171 (1996).

    CAS  Google Scholar 

  5. X.B. Liu, E. Barbero, J. Xu, M. Burris, K.M. Chang, and V. Sikka: Liquid metal corrosion of 316L, Fe3Al, and Fe-Cr-Si in molten Zn-Al baths. Metall. Mater. Trans. A 36A, 2049 (2005).

    CAS  Google Scholar 

  6. M.S. Brunnock, R.D. Jones, G.A. Jenkins, and D.T. Llewellyn: Investigation of the interactions between liquid zinc and stainless steels for use in continuous galvanizing hardware. Zinc-Based Steel Coating Systems: Production and Performance (TMS Symposium), 1998; p. 51.

    Google Scholar 

  7. K. Tani, T. Tomita, Y. Kobayashi, Y. Takatani, and Y. Harada: Durability of sprayed WC/Co coatings in Al- added zinc bath. ISIJ Int. 34, 822 (1994).

    CAS  Google Scholar 

  8. B.G. Seong, S.Y. Hwang, M.C. Kim, and K.Y. Kim: Reaction of WC/Co coating with molten zinc in a zinc pot of a continuous galvanizing line. Surf. Coat. Technol. 138, 101 (2001).

    CAS  Google Scholar 

  9. M.S. Brunnock, R.D. Jones, G.A. Jenkins, and D.T. Llewellyn: Supermeniscus interactions between molten zinc and bath hardware materials in galvanizing. Ironmaking Steelmaking 24, 40 (1997).

    CAS  Google Scholar 

  10. W.J. Wang, J.P. Lin, Y.L. Wang, and G.L. Chen: The corrosion of intermetallic alloys in liquid zinc. J. Alloys Compd. 428, 237 (2007).

    CAS  Google Scholar 

  11. Y.C. Dong, D.R. Yan, J.N. He, J.X. Zhang, and X.Z. Li: Degradation behaviour of ZrO2-Ni/Al gradient coatings in molten Zn. Surf. Coat. Technol. 201, 2455 (2006).

    CAS  Google Scholar 

  12. D.N. Tsipas and C. Perez-Perez: A boronizing treatment for low-carbon steels. J. Mater. Sci. Lett. 1, 298 (1982).

    CAS  Google Scholar 

  13. J. Rus, C.L.D. Leal, and D.N. Tsipas: Boronizing of 304 steel. J. Mater. Sci. Lett. 4, 558 (1985).

    CAS  Google Scholar 

  14. G. Stergioudis: Formation of boride layers on steel substrates. Cryst. Res. Technol. 41, 1002 (2006).

    CAS  Google Scholar 

  15. G. Palombarini and M. Carbucicchio: High boron phases on borided iron and iron alloys. J. Mater. Sci. Lett. 4, 170 (1985).

    CAS  Google Scholar 

  16. M. Carbucicchio, G. Palombarini, and G. Sambogna: Surface iron-boron reaction products on low-alloy substrates. Hyperfine Interact. 41, 617 (1988).

    CAS  Google Scholar 

  17. D.N. Tsipas and J. Rus: Boronizing of alloy steels. J. Mater. Sci. Lett. 6, 118 (1987).

    CAS  Google Scholar 

  18. D.N. Tsipas, G.K. Triantafyllidis, J.K. Kiplagat, and P. Psillaki: Degradation behaviour of boronized carbon and high alloy steels in molten aluminium and zinc. Mater. Lett. 37, 128 (1998).

    CAS  Google Scholar 

  19. S.Q. Ma, J.D. Xing, H.G. Fu, D.W. Yi, X.H. Zhi, and Y.F. Li: Effects of boron concentration on the corrosion resistance of Fe-B alloys immersed in 460 °C molten zinc bath. Surf. Coat. Technol. 204, 2208 (2010).

    CAS  Google Scholar 

  20. X.M. Cao, R.N. Ma, J.J. Wu, M. Wen, Y.Z. Fan, and A. Du: Influences of Si on corrosion of Fe-B alloy in liquid zinc. Corros. Eng., Sci. Technol. 37, 1840 (2003).

    Google Scholar 

  21. W.J. Wang, J.P. Lin, Y.L. Wang, and G.L. Chen: The corrosion of Fe3Al alloy in liquid zinc. Corros. Sci. 49, 1340 (2007).

    CAS  Google Scholar 

  22. N. Tang, Y.P. Li, S. Kurosu, Y. Koizumi, H. Matsumoto, and A. Chiba: Interfacial reactions of solid Co and solid Fe with liquid Al. Corros. Sci. 60, 32 (2012).

    CAS  Google Scholar 

  23. S.Q. Ma, J.D. Xing, D.W. Yi, H.G. Fu, and G.F. Liu: Microstructure and corrosion behavior of cast Fe-B alloys dipped into liquid zinc bath. Mater. Charact. 61, 866 (2010).

    CAS  Google Scholar 

  24. M.P. Short, R.G. Ballinger, and H.E. Hänninen: Corrosion resistance of alloys F91 and Fe-12Cr-2Si in lead-bismuth eutectic up to 715 °C. J. Nucl. Mater. 434, 259 (2013).

    CAS  Google Scholar 

  25. G. Gulsoy, G.S. Was, S.J. Pawel, and J.T. Busby: Degradation modes of austenitic and ferritic-martensitic stainless steels in He-CO-CO2 and liquid sodium environments of equivalent oxygen and carbon chemical potentials. J. Nucl. Mater. 441, 633 (2013).

    CAS  Google Scholar 

  26. A.R.B. Verma and W.J. van Ooij: High-temperature batch hot-dip galvanizing. Part 1. General description of coatings formed at 560 °C. Surf. Coat. Technol. 89, 132 (1997).

    CAS  Google Scholar 

  27. A.R.B. Verma and W.J. van Ooij: High-temperature batch hot-dip galvanizing. Part 2. Comparison of coatings formed in the temperature range 520-555 °C. Surf. Coat. Technol. 89, 143 (1997).

    CAS  Google Scholar 

  28. M.A. Arafin and J.A. Szpunar: A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies. Corros. Sci. 51, 119 (2009).

    CAS  Google Scholar 

  29. V.Y. Gertsman and S.M. Bruemmer: Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys. Acta Mater. 49, 1589 (2001).

    CAS  Google Scholar 

  30. M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, and I. Karibe: Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering. Acta Mater. 50, 2331 (2002).

    CAS  Google Scholar 

  31. S. Tsurekawa, S. Nakamichi, and T. Watanabe: Correlation of grain boundary connectivity with grain boundary character distribution in austenitic stainless steel. Acta Mater. 54, 3617 (2006).

    CAS  Google Scholar 

  32. M. Guérin, E. Andrieu, G. Odemer, J. Alexis, and C. Blanc: Effect of varying conditions of exposure to an aggressive medium on the corrosion behavior of the 2050 Al-Cu-Li alloy. Corros. Sci. 85, 455 (2014).

    Google Scholar 

  33. L. Lapeire, E. Martinez Lombardia, K. Verbeken, I. De Graeve, L.A.I. Kestens, and H. Terryn: Combined EBSD and AFM study of the corrosion behaviour of ETP-Cu. Mater. Sci. Forum 702, 673 (2012).

    Google Scholar 

  34. C.P. Jones, T.B. Scott, J.R. Petherbridge, and J. Glascott: A surface science study of the initial stages of hydrogen corrosion on uranium metal and the role played by grain microstructure. Solid State Ionics 231, 81 (2013).

    CAS  Google Scholar 

  35. I. Campos, M. Palomar, A. Amador, R. Ganem, and J. Martinez: Evaluation of the corrosion resistance of iron boride coatings obtained by paste boriding process. Surf. Coat. Technol. 201, 2438 (2006).

    CAS  Google Scholar 

  36. M.L. Giorgl, P. Durighello, and R. Nicolle: Dissolution kinetics of iron in liquid zinc. J. Mater. Sci. 39, 5803 (2004).

    Google Scholar 

  37. V.I. Dybkov: Reaction Diffusion and Solid State Chemical Kinetics, 1st ed. (The IPMS Publications, Kyiv, Ukraine, 2002); pp. 215–217.

    Google Scholar 

  38. M.J. Assael, I.J. Armyra, J. Brillo, S.V. Stankus, J.T. Wu, and W.A. Wakeham: Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc. J. Phys. Chem. Ref. Data 4, 033101 (2012).

    Google Scholar 

  39. F.B. Celerier and F. Barbier: Investigation of models to predict the corrosion of steels in flowing liquid lead alloys. J. Nucl. Mater. 289, 227 (2001).

    Google Scholar 

  40. M. Niinomi, Y. Ueda, and M. Sano: Dissolution of ferrous alloys into molten aluminium. Trans. Jpn. Inst. Met. 23, 780 (1982).

    Google Scholar 

  41. E.L. Cussler: Diffusion mass transfer in fluid systems, 3rd ed. (Cambridge University Press, New York, America, 2007); p. 293.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the financial support for this work from the Natural Science Foundation of China under Grant Nos. 51301128, 51271142, and 51274016, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant Nos. 20110201130008 and 20120201120005, the National Science Foundation for Post-doctoral Scientists of China under Grant Nos. 2012M521767 and 2013T60875, Shaanxi provincial postdoctoral research project, and the Fundamental Research Funds of Xi’an Jiaotong University under Grant Nos. xjj2013038 and xjj2014167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengqiang Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Ma, S., Xing, J. et al. Investigation of flowing liquid zinc erosion and corrosion properties of the Fe–B alloy at various times. Journal of Materials Research 30, 727–735 (2015). https://doi.org/10.1557/jmr.2015.27

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.27

Navigation